
An LSTM Method for Predicting CU Splitting in
H.264 to HEVC Transcoding

Yanan Wei#, Zulin Wang#∗, Mai Xu #, Shuhao Qiao#

School of Electronic and Information Engineering, BeihangUniversity, Beijing, China
∗ Collaborative Innovation Center of Geospatial Technology, Wuhan, China

Corresponding Author: Mai Xu(maixu@buaa.edu.cn)

Abstract—For H.264 to high efficiency video coding (HEVC)
transcoding, this paper proposes a hierarchical Long Short-
Term Memory (LSTM) method to predict coding unit (CU)
splitting. Specifically, we first analyze the correlation between
CU splitting patterns and H.264 features. Upon our analysis, we
further propose a hierarchical LSTM architecture for predi cting
CU splitting of HEVC, with regard to the explored H.264
features. The features of H.264, including residual, macroblock
(MB) partition and bit allocation, are employed as the input
to our LSTM method. Experimental results demonstrate that
the proposed method outperforms the state-of-the-art H.264
to HEVC transcoding methods, in terms of both complexity
reduction and PSNR performance.

Index Terms—H.264, HEVC, Transcoding, LSTM, CU splitting

I. I NTRODUCTION

Transcoding is a technique which converts video stream
from one encoding into another. Alongside the evolution
of video coding standards, compression efficiency has been
gradually improved. As a result, several video coding stan-
dards (e.g., MPEG-1, MPEG-2, MPEG-4, H.263, H.264 and
high efficiency video coding (HEVC)) co-exist in a certain
range of applications, which makes transcoding desirable.
Video transcoding is a proper solution that bridges the gap
in sharing multimedia contents across various types of mul-
timedia devices (e.g., television, computer, laptop, tablet and
smart phone). Therefore, transcoding has attracted increasing
attention [1].

In the past two decades, many transcoding algorithms have
been proposed with promising performance. However, the lat-
est video coding standard HEVC, which achieves outstanding
coding efficiency at the cost of large computational com-
plexity, still challenges the existing transcoding algorithms.
As the state-of-the-art video coding standard, HEVC offers
excellent rate-distortion performance and supports higher res-
olution video coding. As a result, a large number of videos
are encoded by HEVC over the past few years. Meanwhile,
more and more terminals tend to adopt this new standard. On
the other hand, extensive video streams encoded by previous
H.264 standard need to be transcoded into HEVC domain. To

… … …

109 frame 110 frame 113 frame 117 frame 121 frame

… … …

169 frame 170 frame 173 frame 177 frame 181 frame

Same CU splitting.

Fig. 1. Two examples of the temporal similarity of CU partition.

this end, efficient transcoding from H.264 to HEVC receives
a great deal of research effort.

In fact, H.264 to HEVC transcoding can be accomplished
by a fully H.264 decoding process and then a fully HEVC
encoding process. However, such procedures result in in-
efficiency as HEVC encoding is rather time-consuming. In
particular, coding tree unit (CTU) partition of HEVC takes up
high computational time [2], as all possible splitting patterns
of coding unit (CU) need to be traversed for rate-distortion
optimization. Thus, it is important to predict CU partition
of HEVC according to H.264 bitstreams, when designing an
efficient transcoding method. The methods for H.264 to HEVC
transcoding can be divided into two categories: either heuristic
or data-driven. Heuristic methods normally leverage or extract
some specific knowledge in compressed bitstream, combining
with human knowledge, to accomplish the transcoding from
H.264 to HEVC. For example, in [3], the variance of motion
vectors (MVs) of four H.264 macroblocks (MBs) is used
to explore the possibility of merging to form larger CU in
HEVC. Mora et al. [4] applied motion similarity of H.264
MBs to build a fusion map, which is used to limit the depth
of CU in HEVC coded frames. Compared with heuristic
methods, data-driven methods make full use of training data
to accomplish CU splitting in H.264 to HEVC transcoding,
which achieves better performance than heuristic methods.
In [2], [5], [6], [7], linear discriminant is applied to map
the MB in H.264 to64 × 64 or 32 × 32 CUs in HEVC.
Decision tree is utilized in [8] for fast CU splitting decision
during H.264 to HEVC transcoding, in light of a mining

978-1-5386-0462-5/17/$31.00 ©2017 IEEE. VCIP 2017, Dec. 10 – 13, 2017, St Petersburg, U.S.A.

0

0.1

0.2

0.3

0.4

0.5

0.6

MV Residual MB partition Bit allocation

CC

MV Residual MB partition Bit allocation MV Residual MB partition Bit allocation

QP=22

MV Residual MB partition Bit allocation

Size:16*16 Size:64*64

QP=27 QP=32 QP=37

Fig. 2. CC values between features of H.264 bitstream and CU splitting patterns.

process on H.264 decoding attributes. Naive Bayes classifier is
applied in [9] and [10] to make decision on CU splitting for
H.264 to HEVC transcoding, which avoids exhaustive rate-
distortion optimization search on all possible CU patterns.
In [11] and [12], features of MB partition types, discrete
cosine transformation coefficient and QP are extracted from
H.264 bitstreams to train the support vector machine (SVM)
classifier, in order to speed up CU splitting in H.264 to HEVC
transcoding. MV clustering is utilized in [13] and [14] for CU
partition in H.264 to HEVC transcoding.

However, the state-of-the-art transcoding methods does not
take into account the correlation of CU partition across
frames, as can be seen in Figure 1. Long Short-Term Memory
(LSTM) network is an efficient deep learning approach to
learn temporal correlation of data. Therefore, in this paper
we propose a hierarchical LSTM method for predicting CU
partition patterns, in H.264 to HEVC transcoding. Specifically,
a hierarchical LSTM architecture which consists of three level
LSTM classifiers is built. In this architecture, the input H.264
features are selected, according to the analysis of correlation
between features of H.264 and CU splitting of HEVC. The
three level LSTM classifiers are adopted in our hierarchical
LSTM, which decides whether to split a CU, thus enabling
prediction of CU splitting. Therefore, CU splitting can be
speeded up for H.264 to HEVC transcoding.

II. OUR METHOD

In section II-A, we first analyze the linear correlation
between features in H.264 bitstream and CU patterns, as the
preliminary of our method. Then, according to the correlation
analysis, we present our hierarchical LSTM method for H.264
to HEVC transcoding.

A. Correlation Analysis

We argue in this section that features in H.264 domain can
be employed in fast decision of CU splitting patterns, when
transcoding from H.264 to HEVC. In our work, we encode the
18 standard test video sequences of JCT-VC and 93 collected
raw video sequences by applying H.264 (JM 19.0), at four
QPs (22, 27, 32, 37). Given the encoded data, we explore
the correlation between features of H.264 and CU splitting of
HEVC. Here, the features of H.264 include MV, residual, MB
partition and bit allocation.

The linear correlation can be calculated by correlation
coefficient (CC),

CC =

∑N

i=1(fi − f)(gi − g)
√

∑N

i=1(fi − f)2
√

∑N

j=1(gj − g)2
. (1)

In (1), fi denotes the feature of H.264 corresponding to the
i-th CU in HEVC, andgi means the ground truth of thei-th
CU splitting pattern. Besides,f and g are the mean values
of {fi}Ni=1 and {gi}

N
i=1. We can see from Figure 2 that CU

splitting patterns are highly correlated with bit allocation,
MB partition and residual. In particular, CC values of those
three features are larger than 0.4 for64 × 64 CU. Besides,
CC values are above 0.3 for bit allocation, MB partition and
residual, when CU is16 × 16. Therefore, bit allocation, MB
partition and residual of H.264 are selected in our method as
features to predict CU splitting of HEVC, for H.264 to HEVC
transcoding.

B. Hierarchical LSTM Method

Now, we present the architecture of our hierarchical LSTM
method for H.264 to HEVC transcoding. Figure 3 shows
the proposed hierarchical LSTM architecture. There are three
different LSTM classifiers, corresponding to three levels of
CU partition. The inputs to those LSTM classifiers are H.264
features i.e., bit allocation, residual and MB partition. It is
worth mentioning that if the time step of LSTM isM , the
inputs to an LSTM classifier are a sequence of features coming
from M frames, and the outputs are the splitting decision
of CUs in those frames. When the current CU is decided
to be split, the next level LSTM classifier is activated and
makes decision for next level CUs. Figure 4 shows the internal
mechanism of LSTM. One LSTM unit consists of one cell
and three gates (input, forget and output). The input gate
brings new information to the whole network. The forget gate
determines whether the information is forgotten or discarded
in the network, while the output gate decides which piece of
message is sent to the next LSTM unit. The definitions of the
three gates are

it = σ(Wi · [ht−1,Ft] + bi),

ft = σ(Wf · [ht−1,Ft] + bf),

ot = σ(Wo · [ht−1,Ft] + bo),

(2)

whereWi, Wf , Wo are weights of input, forget and output
gates, andbi, bf andbo are their corresponding biases. Besides
σ(·) is a sigmoid function.Ft is the input H.264 features of

978-1-5386-0462-5/17/$31.00 ©2017 IEEE. VCIP 2017, Dec. 10 – 13, 2017, St Petersburg, U.S.A.

LSTM

LSTM

Ft+NFt Ft+1 Ft+2 …

Ot Ot+1 Ot+2 Ot+N…

Fully connected

…

Activate

…

…

Fully connected

…

Activate

LSTM

…

…

Fully connected

Input feature sequences of N frames

CU splitting decisions of N frames

Ft+NFt Ft+1 Ft+2 …

…Ot+1 Ot+2 Ot+NOt

Level 1 Level 2 Level 3

Fig. 3. The architecture of our hierarchical LSTM method forH.264 to HEVC transcoding. Note that all LSTM layers are followed by a fully connected
layer.

the current CU in thet-th frame, andht−1 is the output of
CU splitting patterns for the(t− 1)-th LSTM unit.

In our hierarchical LSTM method, three LSTM classifiers
are learned by training data (including CU splitting patterns
and H.264 features). The loss function of sigmoid cross
entropy is employed for training our network:

L =

K
∑

i=1

(yi log ai + (1− yi) log(1− ai)). (3)

Assume thatyi indicates the ground truth of thei-th CU,
in which yi = 1 means that thei-th CU is to be split and
yi = 0 is opposite. In addition,ai is the output modelled
by the sigmoid function. In the training phase, those three
LSTM classifiers are trained individually. For training the
LSTM classifier oflevel 1, 144-dimensional feature vectors,
consisting of 16 elements of bit allocation, 64 elements of
MB partition and 64 elements of residual, are delivered to each
LSTM unit as the inputs. Note that for reducing the dimension
of features, residual feature is replaced by taking the sum of
the absolute value of residual in each8× 8 CU. Similarly, the
LSTM classifiers oflevel 2 and level 3 have 36-dimensional
and 9-dimensional input feature vectors. In the test phase,the
LSTM classifier oflevel 1 is firstly used to make decision on
the splitting of64×64 CU. If the64×64 CU is decided to be
split, the LSTM classifier of the next level (level 2) is activated
and makes decision for the four CUs at the next level. The
operation mechanism between the LSTM classifiers oflevel 2
and level 3 is also activated. Consequently, LSTM classifiers
need not to traverse all CUs, andM frames splitting decisions
are made one time. Therefore, encoding time is sufficiently
saved by applying the proposed hierarchical LSTM.

III. E XPERIMENTSAND RESULTS

In this section, we present the experimental results to
evaluate the transcoding performance of our LSTM method.
For evaluation, 18 standard test video sequences of JCT-VC
and 93 collected raw videos were used in our experiment.
In our experiments, 956,555 samples from 93 collected raw
video sequences were divided into non-overlap training set
(900,000 samples) and validation set (56,555 samples). Note
that the ground truth of CU splitting results was extracted and

used to learn the proposed hierarchical LSTM model. Then, 18
standard test video sequences were used as the test set. LSTM
was implemented in deep learning platform “Tensorflow”. For
training, the length of LSTM time step was 30 and the learning
rate was set to10−3. Besides, the batch size was set to be
200. Here, all hyperparameters above were tuned to make the
validation results appropriate.

The proposed transcoding method was implemented on JM
19.0 and HM 16.0, and video sequences were compressed by
HEVC with rate control. Here, we first encoded each video
sequence at fixed QP=32. Then, the actual bit-rates used for
compressing the video sequences at the fixed QP=32 were
set as the target bit-rates for the encoder. Furthermore, the
low delay IPPP structure was chosen for implementation, by
using the HM default configuration fileencoder lowdelay P
main.cfg. Besides, our experiments were performed on the
computer with CPU Intel(R) Core(TM) i7-3770 @ 3.40 GHz,
16 GB memory, and Windows 10 operating system.

We compare our hierarchical LSTM with the state-of-the-art
method [12]. The metrics of∆T and∆PSNR are measured
for comparison. In this paper,∆T is defined as

∆T =
To − Tp

To

× 100%, (4)

whereTo andTp are the time costs of the original transcoder1

and the proposed transcoder. In addition,∆PSNR is defined
as

∆PSNR = PSNRo − PSNRp. (5)

In (5), PSNRo and PSNRp denote the PSNR values of
the original and proposed transcoders. Table I reports the
results of our method and [12]. It can be seen that our
method is superior to [12] in both complexity reduction and
PSNR performance. In particular, our method has a smaller
average PSNR reduction 0.0543 than 0.0614 PSNR reduction
of [12]. Note that∆PSNR can reflect the distortion at the
same bit-rate, since all experiments are conducted with rate
control. Meanwhile, the transcoding complexity is significantly

1The original transcoder refers to encoding the decoded H.264 video stream
by the original HEVC encoder of HM 16.0.

978-1-5386-0462-5/17/$31.00 ©2017 IEEE. VCIP 2017, Dec. 10 – 13, 2017, St Petersburg, U.S.A.

+

X

X

X +

X

X

X +

X

X

XXX +++

XXX

XXX

X

++

XXX

XXX

XXX

Ft-1 Ft Ft+1

Fig. 4. The mechanism of LSTM units.

TABLE I
RESULTS OF∆PSNR (dB)AND ∆T (%) FOR VIDEO SEQUENCES.

Class Sequence
Ours [12]

∆ T ∆PSNR ∆ T ∆ PSNR

A
PeopleOnStreet 58.34 0.1321 32.59 0.1408

Traffic 67.84 0.0525 59.41 0.0612

B

BasketballDrive 62.17 0.0330 62.45 0.0498

BQTerrace 70.90 0.0110 56.81 0.0257

Cactus 64.70 0.0410 52.87 0.0637

Kimono 63.06 0.0009 58.24 0.0660

ParkScene 63.68 0.0052 55.42 0.0461

C

BasketballDrill 61.06 0.0612 50.92 0.0471

BQMall 60.11 0.1461 47.58 0.0863

PartyScene 59.15 0.0417 34.99 0.0554

RaceHorses 57.38 0.1146 44.05 0.0660

D

BasketballPass 59.36 0.0846 41.95 0.1227

BlowingBubbles 57.60 0.0408 48.48 0.0585

BQSquare 56.71 0.0178 39.07 0.0392

RaceHorses 56.13 0.0959 30.32 0.0829

E

FourPeople 67.87 0.0617 63.64 0.0411

Johnny 69.42 0.0146 56.79 0.0018

KristenAndSara 67.60 0.0231 65.54 0.0516

Average 62.39 0.0543 50.60 0.0614

reduced by applying our method. As we can see in Table I,
∆T of our method is 62.39%2, which is far better than 50.6%
of [12]. In summary, our method performs better than [12], in
terms of both quality loss and complexity reduction.

IV. CONCLUSION

This paper has proposed a hierarchical LSTM method for
predicting CU splitting in HEVC to H.264 transcoding. First,
several H.264 features were chosen to train the three LSTM
classifiers, according to the correlation between CU splitting
and H.264 features. Then, a new hierarchical LSTM archi-
tecture was developed, corresponding to three level classifiers
of CU splitting. Finally, the experimental results showed that
our method advances the state-of-the-art HEVC to H.264
transcoding.

2In spite of the huge amount of time spent on training the proposed LSTM,
it averagely takes only 0.15% time of the original transcoder to predict CU
splitting by applying the trained LSTM, which has already been taken into
account in∆T.

ACKNOWLEDGMENT

This work was supported by the NSFC projects under
Grants 61471022, 61573037, and 61202139, and Fok Ying-
Tong education foundation under grant 151061.

REFERENCES

[1] A. Vetro, C. Christopoulos, and H. Sun, “Video transcoding architectures
and techniques: an overview,”IEEE Signal processing magazine, vol. 20,
no. 2, pp. 18–29, 2003.

[2] D. Zhang, J. Tong, and D. Zang, “Fast cu partition for h. 264/avc to
hevc transcoding based on fisher discriminant analysis,” inIEEE Visual
Communications and Image Processing (VCIP), 2016, pp. 1–4.

[3] A. Nagaraghatta, Y. Zhao, G. Maxwell, and S. Kannangara,“Fast h.
264/avc to hevc transcoding using mode merging and mode mapping,” in
IEEE International Conference on Consumer Electronics (ICCE), 2015,
pp. 165–169.

[4] E. G. Mora, M. Cagnazzo, and F. Dufaux, “Avc to hevc transcoder based
on quadtree limitation,”Multimedia Tools and Applications, pp. 1–25,
2016.

[5] E. Peixoto, B. Macchiavello, E. M. Hung, A. Zaghetto, T. Shanableh,
and E. Izquierdo, “An h. 264/avc to hevc video transcoder based on
mode mapping,” inIEEE International Conference on Image Processing
(ICIP), 2013, pp. 1972–1976.

[6] E. Peixoto, B. Macchiavello, R. L. de Queiroz, and E. M. Hung, “Fast
h. 264/avc to hevc transcoding based on machine learning,” in IEEE
International Telecommunications Symposium (ITS), 2014, pp. 1–4.

[7] E. Peixoto, T. Shanableh, and E. Izquierdo, “H. 264/avc to hevc video
transcoder based on dynamic thresholding and content modeling,” IEEE
Transactions on Circuits and Systems for Video Technology, vol. 24,
no. 1, pp. 99–112, 2014.

[8] G. Correa, L. Agostini, and L. A. D. S. Cruz, “Fast h.264/avc to
hevc transcoder based on data mining and decision trees,” inIEEE
International Symposium on Circuits and Systems, 2016, pp. 2539–2542.

[9] A. J. Dı́az-Honrubia, J. L. Martı́nez, J. M. Puerta, J. A.Gámez,
J. De Cock, and P. Cuenca, “Fast quadtree level decision algorithm
for h. 264/hevc transcoder,” inIEEE International Conference on Image
Processing (ICIP), 2014, pp. 2497–2501.

[10] A. J. Dı́az-Honrubia, J. L. Martı́nez, P. Cuenca, J. A. Gamez, and J. M.
Puerta, “Adaptive fast quadtree level decision algorithm for h. 264 to
hevc video transcoding,”IEEE Transactions on Circuits and Systems for
Video Technology, vol. 26, no. 1, pp. 154–168, 2016.

[11] Q. Huangyuan, L. Song, Y. Ma, R. Xie, and Z. Luo, “Learning based
fast h. 264 to h. 265 transcoding,” inIEEE Asia-Pacific Signal and
Information Processing Association Annual Summit and Conference
(APSIPA), 2015, pp. 563–570.

[12] L. Zhu, Y. Zhang, N. Li, G. Jiang, and S. Kwong, “Machine learning
based fast h. 264/avc to hevc transcoding exploiting block partition
similarity,” Journal of Visual Communication and Image Representation,
vol. 38, pp. 824–837, 2016.

[13] W. Jiang and Y. Chen, “Low-complexity transcoding fromh. 264 to
hevc based on motion vector clustering,”Electronics Letters, vol. 49,
no. 19, pp. 1224–1226, 2013.

[14] W. Jiang, Y. Chen, and X. Tian, “Fast transcoding from h.264 to hevc
based on region feature analysis,”Multimedia tools and applications,
vol. 73, no. 3, pp. 2179–2200, 2014.

978-1-5386-0462-5/17/$31.00 ©2017 IEEE. VCIP 2017, Dec. 10 – 13, 2017, St Petersburg, U.S.A.

