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Subjective-Driven Complexity Control
Approach for HEVC
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Abstract— The latest High Efficiency Video Coding (HEVC)
standard significantly increases the encoding complexity for
improving its coding efficiency, compared with the preceding
H.264/Advanced Video Coding (AVC) standard. In this paper,
we present a novel subjective-driven complexity control (SCC)
approach to reduce and control the encoding complexity of
HEVC. Through reasonably adjusting the maximum depth of
each largest coding unit (LCU), the encoding complexity can
be reduced to a target level with minimal visual distortion.
Specifically, the maximum depths of different LCUs can be
varied through solving the proposed optimization formulation
of complexity control, based on two explored relationships:
1) the relationship between the maximum depth and encoding
complexity and 2) the relationship between the maximum depth
and visual distortion. Besides, the subjective visual quality is
favored with a novel subjective-driven constraint imposed in
the formulation, on the basis of a visual attention model.
Finally, the experimental results show that our approach can
achieve a wide range of encoding complexity control (as low
as 20%) for HEVC, with the smallest complexity bias being 0.2%.
Meanwhile, our SCC approach outperforms other two
state-of-the-art complexity control approaches, in terms of both
control accuracy and visual quality.

Index Terms— Complexity control, High Efficiency Video
Coding (HEVC), maximum depth.

I. INTRODUCTION

RECENTLY, high-resolution videos and large-sized
screens have been flooding into the daily life of humans,

bringing about perfect visual enjoyment but at the same time
huge challenge on communication bandwidth. It is labored
for the once-booming H.264/Advanced Video Coding (AVC)
to complete this challenge with its available coding efficiency,
thus motivating the birth of a new video coding standard called
High Efficiency Video Coding (HEVC). The draft of HEVC
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was issued in January 2013, and many works have been done
to constantly improve its coding efficiency.

Compared with H.264/AVC, HEVC can save bitrates by
about 50% with comparable video quality [1]. This eminent
coding efficiency mostly benefits from the new coding tree
unit (CTU) block partitioning structure, diverse intra-/inter-
prediction modes, and other cutting-edge techniques [2], [3].
Along with the remarkable performance of coding efficiency,
the encoding complexity of HEVC increases dramatically,
ranging from 9% to 502% higher than H.264/AVC [4].
However, most of the multimedia-ready devices, such as
portable computers, pads, and smartphones, do not have
the ability to sustain such massive complexity due to their
limited computational powers. Therefore, the development and
research on video coding should not only fasten on enhancing
the coding efficiency but also consider the computational
complexity.

Complexity control is rather important for HEVC. On the
one hand, with the continuous demand for videos at higher
resolutions, the complexity of video coding tremendously
increases from one standard to the next, with HEVC climbing
the highest so far. On the other hand, the amount of multimedia
devices has been growing explosively from 2007 onward
(when the first generation of iPhone appeared). More and more
portable devices featured by encoding and decoding videos are
favored by consumers, such as smartphones, pads, carPCs, and
other mobile devices. However, their computational powers
vary from one device to another. Thus, for better development
and implementation of HEVC on various platforms with
disparate computing capability, it is necessary to develop an
efficient complexity control approach for HEVC.

For the past decades, extensive work has been done
to control the encoding complexity for different video
coding standards [5]–[7]. More specifically, for H.263,
Ismaeil et al. [5] evaluated the complexity of four most time-
consuming components in encoding process, including the
motion estimation (ME), discrete cosine transform, quantiza-
tion, and mode selection. Each of the four components can
be configured to reduce the encoding complexity. By globally
assembling the four components with optimal configurations,
complexity control can be achieved. Afterward, dealing with
the macroblock in H.264/AVC, Kannangara et al. [6] proposed
an early skip macroblock mode prediction algorithm on the
basis of a Bayesian framework. Through reasonably modifying
the Bayesian maximum-likelihood criterion that decides the
threshold for early skip, the actual complexity of [6] can be
reduced to a target complexity. For HEVC, the complexity
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control mechanism may be related to the new CTU parti-
tioning scheme. For example, Corrêa et al. [7] explored the
relationship between the coding unit (CU) depth and coding
complexity, and then they proposed to constrain the maximum
largest CU (LCU) depths of certain frames the same as those
of the previous frames, rather than exhaustive rate-distortion
optimization (RDO) search. By means of adjusting the number
of those constrained frames, the encoding complexity can
match the target complexity. However, the above methods
do not take visual distortion optimization into consideration
during the process of complexity control. Besides, with the
deeper study of the human visual system (HVS), it has been
found that human attention does not focus on the whole
picture when watching a video, but merely a small region
around fixation points [8]. In the research fields of rate control
and video quality assessment, the subjective quality of recon-
structed videos has been considered as an important criterion,
in addition to the traditional objective rate-distortion (RD)
performance. However, to the best of our knowledge, for
HEVC, there is no complexity control approach that considers
the subjective factors for ensuring the subjective quality of
compressed videos.

In this paper, we propose a subjective-driven complexity
control (SCC) approach, based on the visual attention model
developed in [9] and [10], to effectively control the encoding
complexity of HEVC. The focus of our SCC approach is
to vary the maximum depth of each LCU, with the con-
straint on a given target complexity and minimal objective
distortion. Beyond, different from the previous complexity
control approaches, the subjective visual quality can be favored
in our SCC approach, since the LCUs with larger weights
have priority on less distortion, at the same optimal objective
quality.

The main contributions of our SCC approach in this paper
are presented as follows.

1) We investigate the influence of the maximum depth
of LCU on encoding complexity and visual distortion.
In this paper, we explore the relationship between the
maximum depth of LCU and the overall encoding
complexity. Besides, generally speaking, smaller max-
imum depth may result in larger visual distortion for
each LCU. In this paper, we also build the relation-
ship between the maximum depth of LCU and visual
distortion.

2) We model the encoding complexity control problem
of HEVC by proposing an optimization formulation
with a constraint on subjective quality. Specifically, the
visual distortion caused by reducing maximum depths
of LCUs can be minimized, while decreasing encoding
complexity to a target. Meanwhile, subjective quality
can be favored by integrating the visual attention model.
Liu et al. [11] employed a similar algorithm to allocate
more complexity resources to salient regions. However,
it is used to decrease the decoding complexity of
H.264/AVC, but not to control encoding complexity.

3) We propose a solution to our optimization formulation.
Our solution yields various maximum depths for LCUs,
to achieve target encoding complexity with minimal

visual distortion. Corrêa et al. [7] also utilized the
LCU partition to control the encoding complexity.
Actually, the complexity is controlled by predicting
maximum LCU depths, based on the similarity of LCU
partitions between neighboring frames. This frame-level
control may result in large fluctuations of visual dis-
tortion and encoding complexity. Our approach controls
the encoding complexity at LCU level, which is able to
avoid such a disadvantage.

This paper is organized as follows. In Section II, we briefly
review the related work. Section III introduces the visual
attention model used in our approach. In Section IV, the details
about the proposed SCC approach are discussed. Then, the
experimental results are shown in Section V to verify the
effectiveness of our approach. Finally, Section VI concludes
this paper.

II. PREVIOUS WORK ON COMPLEXITY CONTROL

Almost every new video coding standard was developed,
followed by numerous works on reducing or controlling its
encoding complexity, since the encoding complexity of a new
standard is usually multiplied compared with its previous
generation. For the past few years, a plenty of work has been
delivered, with the intention to reduce encoding complexity or
achieve complexity control. In the following, we briefly review
the relevant work on this direction.

A. Encoding Complexity Reduction Work

Effective complexity reduction is the premise of complex-
ity control. Many studies have been devoted to complexity
reduction for both H.264/AVC and HEVC.

For H.264/AVC, most of the encoding complexity reduc-
tion studies focused on the ME [12]–[15] and mode
decision (MD) [16]–[20] processes, which are the two most
time-consuming functions in H.264/AVC. Xu and He [12],
Mak et al. [13], and Chen et al. [14] developed various
ME early termination schemes to reduce the complexity of
ME process. Li et al. [16] and Kannangara et al. [17]
proposed several early termination methods for MD com-
plexity reduction, by predicting whether a macroblock is
of skip mode or not. Different from the early termination-
related methods, Huang et al. [15] proposed a context-based
ME complexity reduction approach. In this approach, the
complexity can be reduced by adaptively decreasing the
number of searched reference frames. In [18]–[20], various
approaches were developed to shrink the optional inter/intra
modes in the RDO process, thus decreasing MD complexity.
Wang et al. [21] employed a hybrid approach by jointly
optimizing MD and ME processes to save the encoding time
of H.264/AVC.

For HEVC complexity reduction, extensive studies pay
attention to the new block partitioning scheme, which leads to
huge encoding complexity. Among these studies, [22]–[24] are
devoted to finding ways of reducing the encoding complexity
on exhaustively searching for optimal CU sizes in the block
partitioning process. Specifically, Leng et al. [22] proposed an
early CU depth prediction approach at frame level. The basic
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idea of this approach is to skip some CU depths that are rarely
used in the previous frames, thus simplifying the RDO search
process to save the encoding complexity. Corrêa et al. [23]
developed similar approaches at CU level, with the central idea
to narrow the current CU depth search range, by virtue of the
depth information of adjacent CUs. In addition, some early
prediction unit (PU) and transform unit (TU) size decision
methods were proposed in [25]–[27] to speed up the PU and
TU size selection process. Specifically, Yoo and Suh [26]
checked the code block flag and RD cost of the current PU to
terminate the prediction process of the next PU for complexity
reduction. Corrêa et al. [28] used data mining tool to early
terminate the RDO process for determining the CU, PU, and
TU partitions. Except for CU, PU, and TU size decisions, there
are still other components in HEVC affecting the encoding
complexity, such as in-loop filtering, and multidirectional intra
predictions. From these aspects, [29]–[31] provide several
methods to reduce the encoding complexity of HEVC.

B. Encoding Complexity Control Work

Benefitting from the above encoding complexity reduction
methods, it is feasible to achieve complexity control for video
coding. There exist lots of complexity control approaches,
which can be classified into the following three main
categories.

The first complexity control philosophy stems from the
prevailing complexity allocation thought. Given a target com-
plexity, through rational allocation of complexity resources,
the actual running complexity can approach the target,
while keeping RD performance well. The approaches
in [32] and [33] were proposed for H.264/AVC to allocate
the encoding complexity in terms of the distortion (e.g., sum
of absolute difference) of each macroblock, in which higher
distortion corresponds to more complexity resources. A rate-
control-like procedure was developed in [34] for complexity
control of H.264/AVC. It employed a novel Lagrange
complexity-RD cost model to make a tradeoff between the
video quality and complexity cost. Unlike the aforementioned
complexity allocation approaches, our SCC approach distrib-
utes the complexity resources according to the pixel-wise
weights for visual saliency. In this way, the subjective visual
quality can be favored.

The heuristic of the second complexity control category is
exploiting several encoding parameters to make complexity
configurable. Typically, Su et al. [35] proposed to manage
the complexity of H.264/AVC through adjusting parameters
to control ME and MD processes, based on complexity
configurable ME and complexity configurable MD algorithms.
Most recently, Zhao et al. [36] have proposed a flexible mode
selection approach for HEVC using a global complexity
control factor. Through a hierarchical complexity allocation
scheme, the overall RD performance can be maximized.
However, it is hard to reach a specific target complexity,
as only a few parameters can be configured. In this paper,
we propose a complexity control approach, in which the
complexity is controlled through reasonably varying the
maximum depth of each LCU. Due to the large number of
LCUs in each frame, the freedom of degree for complexity

control is large such that the encoding complexity can be
reduced to a specific target.

The last kind of approach leverages various early termi-
nation algorithms to control complexity. Corrêa et al. [7]
achieved HEVC complexity control by means of predicting
the maximum depths of LCUs. In this approach, frames are
divided into two categories: 1) unconstrained frames (Fu)
and 2) constrained frames (Fc). The maximum depths of
LCUs in Fc are early determined, the same as the maxi-
mum depths in its previous Fu frame, thus decreasing the
RDO process complexity to a specific target. Ren et al. [37]
proposed to make use of spatial and temporal information to
early terminate the MD process for H.264/AVC complexity
control. Through setting different early terminate thresholds,
the encoding complexity can be reduced to different levels.
In this paper, by adjusting the maximum depths of LCUs,
we can early terminate the RDO process for selecting the
optimal CU sizes of certain LCUs. In this way, the encoding
complexity can be saved and meanwhile controlled. The
advantage of our approach is that the distortion optimization
is considered when decreasing the encoding complexity.

Actually, there are few complexity control approaches pro-
posed for HEVC, since this new standard was just launched
not so long ago. Furthermore, to the best of our knowledge, the
existing approaches do not take into account subjective quality
when controlling the encoding complexity for HEVC. In this
paper, we propose an SCC approach to precisely control the
encoding complexity of HEVC. By utilizing the bottom-up/
top-down visual attention model, our approach can not only
control encoding complexity with minimal visual distortion
but also preserve subjective quality well.

III. VISUAL ATTENTION MODEL

This section describes the visual attention model, as the
foundation of the proposed SCC approach. According to
the HVS, there exists much perceptual redundancy that can
be further exploited to improve coding efficiency without
significant perceived quality degradation. For instance, when
a person looks at a video, he/she may not pay attention to the
whole scene. In other words, a small region around a point of
fixation is concerned most [38], while the peripheral region is
captured at low resolution. In light of this phenomenon, the
computational complexity can be saved in our SCC approach
via decreasing the visual quality in the peripheral region with
high priority.

From now on, we mainly focus on the visual attention
model, which predicts where human looks at a video, as the
preliminary of the proposed SCC approach. To predict human
visual attention, both bottom-up and top-down models can
be utilized for yielding the pixel-wise weight map of each
video frame, reflecting the saliency values of different pixels.
Specifically, in light of study on the HVS, several low-level
features have been developed for the bottom-up model of
saliency detection. A representative bottom-up model is [9],
in which the low-level features of color, intensity, and motion
are integrated to yield saliency maps of videos. However, for
the conversational videos, face is a consensus top-down visual
cue for saliency detection. As such, in [10], the face is used
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as a high-level feature for yielding the saliency maps of video
frames. In this paper, we therefore apply bottom-up [9] and
top-down [10] models in our SCC approach to provide the
weights of saliency, for encoding generic and conversational
videos, respectively.

For the bottom-up visual attention model, we apply phase
spectrum of quaternion Fourier transform (PQFT) algo-
rithm [9] to calculate the weight maps for all the frames in
a video, due to its high accuracy and low complexity. For
example, [9] has shown that the PQFT algorithm con-
sumes less than 1 ms for computing the weight map of
an 800 × 600 video frame on a Windows PC with C/C++
platform. Note that the videos may be downsampled for
detecting saliency with the PQFT algorithm, once videos
have high resolutions or there is the requirement on less
computational time. The normalized weight map v = {vn}N

n=1
(vn ∈[0,1]) for an N-pixel video frame can be computed in
the PQFT algorithm by

v = g ∗
3∑

t=0

ρ2
t (1)

where g is a 2-D Gaussian filter to smooth the weight map.
In addition, ρt is the quaternion representation on four feature
maps over the video frame, reconstructed by the PQFT on
these maps. Note that the four feature maps include two color
channels, one intensity channel, and one motion channel. For
more details, refer to [9].

For the top-down visual attention model, we simply utilize
our hierarchical perception model of face [10] to output the
weight maps when encoding conversational video frames in
our SCC approach. It is because the face is an evident cue
for the visual attention model. It has been pointed out in [10]
that facial regions are much more salient than background.
Among the facial regions, facial features (e.g., eyes and
mouth) are more visually significant than others, bringing
about greater saliency. Therefore, the facial features should
have the greatest weight, followed by the facial regions and
then the background. Accordingly, pixel-wise weight map
v = {vn}N

n=1 of a conversational video frame can be estimated
as

vn =

⎧
⎪⎨

⎪⎩

1, n ∈ R1

v ′, n ∈ R2

v ′′, n ∈ R3

(2)

where R1, R2, and R3 are the facial feature region, other
facial region, and background. Here, these regions can be
obtained using the same way as [10], in which the face and
facial features are extracted according to the 66 landmarks
of the real-time face alignment [39]. For less complexity, the
3000-frame/s face alignment [40] may be used for obtaining
these regions instead of [39]. In (2), v ′ and v ′′ (v ′′ < v ′ < 1)
are the weights of regions R2 and R3, respectively. In this
paper, we follow [10] to set v ′ = 0.4 and v ′′ = 0.2.
Note that these values are based on the eye tracking results
on viewing conversational videos. Besides, v needs to be
smoothed with 2-D Gaussian filter g as well. See [10] for more
details.

Fig. 1. Examples of weight maps. The intensities in saliency maps, ranging
from 0 to 1, represent the output weights of pixels. Note that the map of
Johnny is the output of the top-down visual attention model [10], whereas
the map for RaceHorses is detected by the bottom-up model [9]. (a) Johnny
(the 272nd frame). (b) Weight map of (a). (c) RaceHorses (the fourth frame).
(d) Weight map of (c).

Fig. 1 shows examples for both top-down and bottom-up
weight maps. From Fig. 1, we can observe that the weight
map of the visual attention model utilized in this paper
is able to roughly reflect the saliency of a video frame.
However, the top-down map may miss some important regions
in the background. Thus, the integration of bottom-up and
top-down models for determining the weights is possible to
make the saliency prediction more effective. As this paper
mainly works on the complexity control for HEVC, the refine-
ment of the visual attention model may hold for the future
work.

Using the visual attention model, we can obtain the saliency
weight for each pixel, which can be used to calculate the
weight for each LCU. The weights of LCUs have an important
effect on favoring subjective quality in our SCC approach,
since they influence the maximum depth allocation to
each LCU. The next section shows the details about how to
incorporate the visual attention models in our approach.

IV. PROPOSED METHOD

In this section, we move to our SCC approach, based on
the visual attention model of Section III, for the complexity
control in HEVC. Since the quad-tree-based CTU partition
takes a majority of encoding complexity in HEVC [41], it is
possible to control encoding complexity of HEVC by setting
various maximum depths {di}I

i=1 (di ∈ {3, 2, 1, 0}) in advance
to all I LCUs in each video frame.

Before introducing our work, we first briefly review the
LCU partition structure in HEVC. During the partitioning
process of the i th LCU, the RDO algorithm is exhaustively
executed to select the optimal depth of each CU under the
constraint of maximum depth di . We illustrate an example
of LCU partitioning structure in Fig. 2. As shown in Fig. 2,
the RDO algorithm is executed in the following repeated way:
if the RD cost of root CU is larger than the aggregated RD cost
of its leaf node CUs, the splitting of root CU is implemented;
otherwise, the root CU is not allowed to be split. Thus, the
RDO process needs to compute the RD costs of CU sizes at
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Fig. 2. Example of LCU partitioning structure. The upward arrow of RD cost
indicates that the RD cost of root CU is larger than the accumulated RD cost
of its leaf CUs, and thus, further splitting can be executed. The downward
arrow indicates that further splitting is inhabited.

all the four depths (i.e., 3, 2, 1, and 0), once di is set to be
the largest as 3, to finally choose the best one. This selection
process indeed consumes huge complexity. However, if di is
set to be 2, the splitting process has to be terminated once
the CU sizes are reduced to 16 × 16 (i.e., splitting is stopped
at layer di = 2 in Fig. 2). As such, only the RD costs of
CUs at three depths (i.e., 2, 1, and 0) need to be compared
by RDO process, resulting in less complexity. The smaller
the di is set, the larger the complexity can be saved. Thus,
the maximum depth di has a crucial effect on reducing the
encoding complexity of HEVC [7].

The main cost on the above encoding complexity reduction
is the visual distortion, defined by �D(di ), which indicates
the increased distortion of the i th LCU, caused by reducing
its maximum depth to di . Actually, such visual distortion can
be minimized in our approach. Beyond the minimization of
visual distortion, subjective quality can be favored with the
following constraint:

∀wi ≥ wl , �D(di ) ≤ �D(dl) (3)

where wi and wl are the averaged weights of the i th and lth
LCUs, respectively. They can be calculated on the basis of the
pixel-wise weight map introduced in Section III using

wi = 1

M

∑

n∈ni

vn (4)

where ni stands for the set of pixel indices in the i th LCU of
a video frame and M is the number of pixels in each LCU.
Recall that vn is the weight of each pixel in the video frame,
ranging from 0 to 1, determined by the aforementioned visual
attention model. Therefore, as formulated in (3), the visually
salient LCUs can be imposed with higher visual quality
(i.e., less visual distortion).

Therefore, in combination with the constraint on subjective
visual quality, the complexity control in our SCC approach
can be formulated by the following optimization model:

min
{di }I

i=1

I∑

i=1

�D(di )

︸ ︷︷ ︸
Visual distortion minimization

s.t.
1

I

I∑

i=1

C(di ) = Tc

︸ ︷︷ ︸
Encoding complexity constraint

∀wi ≥ wl ,�D(di ) ≤ �D(dl)︸ ︷︷ ︸
Subjective-driven constraint

(5)

where Tc is the normalized target complexity, I is the total
number of LCUs in each frame, and C(di ) is the normalized
complexity of encoding the i th LCU with its maximum depth
being di . �D(di ) is the quality loss when the maximum depth
of an LCU is decreased from the largest to di . From this
equation, we can observe that the objective of complexity
control in our SCC approach is to minimize visual distortion at
a given target complexity. Meanwhile, it favors the subjective
visual quality with the proposed subjective-driven constraint
in (3). Note that (5) simply assumes the visual distortion
and encoding complexity of each LCU to be unified at the
same maximum depth. This assumption is reasonable as only
aggregated visual distortion and averaged encoding complexity
are required in (5).

To solve the complexity control problem formulated in (5),
Section IV-A first explores the relationship between the maxi-
mum depth and encoding complexity to work out C(di ). Then,
Section IV-B evaluates the influence of maximum depth on
visual distortion to find out �D(di ). Finally, Section IV-C pro-
poses a solution to (5) and achieves the encoding complexity
control in our SCC approach.

A. Relationship Between Maximum Depth
and Encoding Complexity

As aforementioned, the quad-tree-based CTU partitioning
scheme contributes to a large part of the encoding complexity
in HEVC, on which the maximum depth of each LCU exerts
an important effect. Therefore, it is interesting to investigate
the relationship between the maximum depth and encoding
complexity.

1) Training Sequences: For analyzing the relationship
between the maximum depth and encoding complexity,
we trained four video sequences at four different maximum
depths (i.e., 3, 2, 1, and 0) on HEVC test model reference soft-
ware (HM) 14.0. The training video sequences were selected
from the standard HEVC test sequence database, including
two 1920 × 1080 sequences ParkScene and BQTerrace from
Class B and two 1280 × 720 sequences KristenAndSara
and Vidyo1 from Class E. The frame numbers trained for
BQTerrace, Vidyo1, and KristenAndSara are 300, while
ParkScene has 240 frames. Note that Class E contains con-
versational sequences with human faces. Also, note that these
training sequences are different from the test video sequences
used in the experiments of Section V.

2) Training Procedure: Given the training video sequences,
we used a 64-bit Windows PC with Intel Core i7-4770 proces-
sor @3.40 GHz to investigate the encoding time at various
maximum depths. Here, the low-delay P main configuration
was used for the training. The training procedure is as follows.
First, the video sequences were compressed with maximum
depths of all the LCUs being the largest as 3. The encoding
time1 of each LCU was then recorded2 as the reference time.
Second, the training sequences were encoded with maximum

1In this paper, we use encoding time as the effective measurement of
encoding complexity.

2Here, the encoding time is recorded by the clock function in visual C++
platform, which counts the number of CPU clock cycles to record the encoding
time, during the execution of a program.
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TABLE I

COMPLEXITY CONSUMPTION OF FOUR TEST SEQUENCES AT 1 Mbit/s

depths being other values (i.e., 2, 1, and 0). The encoding
time of each LCU was also recorded. Suppose that C j (d∗

j ),
d∗

j ∈ {3, 2, 1, 0}, denotes the time of encoding the j th LCU at
maximum depth d∗

j . Next, the time on encoding the j th LCU
was normalized using reference time C j (3)

C̃ j
(
d∗

j

) = C j
(
d∗

j

)

C j (3)
, d∗

j ∈ {3, 2, 1, 0}. (6)

Finally, the encoding complexity at each maximum depth can

be obtained by averaging all C̃ j (d∗
j )

⎡

⎢⎢⎣

C̃(3)

C̃(2)

C̃(1)

C̃(0)

⎤

⎥⎥⎦ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

1

J

J∑

j=1

C̃ j
(
d∗

j = 2
)

1

J

J∑

j=1

C̃ j
(
d∗

j = 1
)

1

J

J∑

j=1

C̃ j
(
d∗

j = 0
)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7)

where J is the total number of LCUs in each training
sequence. C̃(3), C̃(2), C̃(1), and C̃(0) are the normalized
encoding complexity in average with maximum depth being
3, 2, 1, and 0.

3) Training Results: Table I shows the training results

of C̃(2), C̃(1), and C̃(0), for four sequences at 1 Mbit/s, using
the above training procedure. Note that sd in Table I stands
for standard deviations. From Table I, we can observe that the
averaged encoding complexity at the same maximum depth is
similar for all the four training sequences, and the correspond-
ing standard deviations are relatively small. Furthermore, the
complexity consumption under the same maximum depth is
nearly unchanged across different bitrates, as shown in Fig. 3.
Therefore, we can combine all the encoding time results
of four sequences together, and then they are averaged to
obtain a generic encoding complexity C(di ) at each maximum
depth

C(di ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, di = 3

0.647, di = 2

0.382, di = 1

0.190, di = 0

(8)

for the complexity control in HEVC.

B. Relationship Between Maximum Depth
and Visual Distortion

We have established the relationship between the maximum
depth and encoding complexity in Section IV-A, as the basis

Fig. 3. Training sequence Vidyo1: influence of bitrates on complexity
consumption of different maximum depths. The bitrates range from 300 kbits/s
to 3 Mbits/s. The results of other video sequences are similar to that of Vidyo1.

of our SCC approach. However, there is no way to guarantee
the visual quality after complexity control. From now on,
we concentrate on exploring the influence of maximum depth
on the visual distortion, for optimizing the visual distortion
in our SCC approach. It is evident that the maximum depth
reduction usually results in visual distortion, as only larger
sized CUs are allowed. However, to the best of our knowledge,
there is no study conducted on investigating the specific
relationship between these two factors. Next, we devote to
find out this relationship through training on a series of video
sequences at different maximum depths.

1) Training Sequences: The video sequences used for inves-
tigating visual distortion are the same as those for training
complexity, including two 1920 × 1080 sequences ParkScene
and BQTerrace and two 1280×720 sequences KristenAndSara
and Vidyo1.

2) Training Procedure: The distortion for training in this
paper is measured in terms of mean square error (MSE).3 The
training procedure is similar to that in Section IV-A. First,
we examined the MSE of each LCU at the largest maximum
depth (i.e., 3), denoted by MSE j (3) as reference. Then, the
MSEs under other maximum depths (i.e., 2, 1, and 0) were
also examined for each LCU, defined as MSE j (d∗

j ). Next, the
normalized visual distortion of the j th LCU can be computed
as

�D̃ j
(
d∗

j

) = MSE j
(
d∗

j

) − MSE j (3)

MSE j (3)
. (9)

By averaging �D̃ j (d∗
j ) of all the LCUs, we can obtain the

visual distortion at different maximum depths

⎡
⎢⎢⎣

�D̃(3)

�D̃(2)

�D̃(1)

�D̃(0)

⎤
⎥⎥⎦ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1

J

J∑

j=1

�D̃ j
(
d∗

j = 2
)

1

J

J∑

j=1

�D̃ j
(
d∗

j = 1
)

1

J

J∑

j=1

�D̃ j
(
d∗

j = 0
)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (10)

3MSE is defined by ‖B′−B‖2
2, where B′ and B are the pixel-wise intensities

of the compressed and original video frames.



DENG et al.: SCC APPROACH FOR HEVC 97

Fig. 4. Fitting curve for relationship between the maximum depth and visual
distortion. The R-square for the fitting curve is 0.8073. There are 16 points
for each maximum depth, which are obtained from four training sequences at
four different bitrates: 500 kbits/s, 1 Mbit/s, 1.5 Mbits/s, and 3 Mbits/s.

Recall that J is the LCU number in each video sequence.
�D̃(2), �D̃(1), and �D̃(0) are the overall normalized visual
distortion when the maximum depths are 2, 1, and 0. However,
different from training encoding complexity, the visual distor-
tion is not unified across different training sequences at various
bitrates. Therefore, the following employs a least-square fitting
scheme to work out �D(di ).

3) Training Results: We examined �D̃(2), �D̃(1),
and �D̃(0) for the four video sequences at bitrates
of 500 kbits/s, 1 Mbit/s, 1.5 Mbits/s, and 3 Mbits/s. The
normalized visual distortion of kth compressed video under
different maximum depths can be denoted by �Dk(3),
�Dk(2), �Dk(1), and �Dk(0), with k ∈ {1, . . . , K }. Here,
K is 16 (i.e., four sequences at four bitrates) in our training,
as shown in Fig. 4. The polynomial fitting is employed in
our approach, to model the relationship between the maximum
depth and visual distortion, with the least-square error on these
data. In fact, the following lemma holds for the least-square
polynomial fitting in our work.

Lemma 1: Given four groups of data {(0,�Dk(0))}K
k=1,

{(1,�Dk(1))}K
k=1, {(2,�Dk(2))}K

k=1, and {(3,�Dk(3))}K
k=1,

the optimal least-square polynomial fitting function of
�D(di ), di ∈ {3, 2, 1, 0}, is

�D(di ) = a0 + a1di + a2d2
i + a3d3

i (11)

where

⎡

⎢⎢⎣

a0
a1
a2
a3

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

1 0 02 03

1 1 12 12

1 2 22 23

1 3 32 33

⎤

⎥⎥⎦

−1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

K

K∑

k=1

�Dk(0)

1

K

K∑

k=1

�Dk(1)

1

K

K∑

k=1

�Dk(2)

1

K

K∑

k=1

�Dk(3)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (12)

Proof: Refer to the Appendix.
According to Lemma 1, given the above training data on

visual distortion of four sequences at four bitrates, we have

the following relationship between the maximum depth and
visual distortion:

�D(di ) = 0.200 − 0.203di + 0.077d2
i − 0.0105d3

i

di ∈ {3, 2, 1, 0}. (13)

The fitting curve of the maximum depth and visual distortion
is shown in Fig. 4. The R-square value of this fitting curve
is 0.8073, verifying the effectiveness of the fitting.

C. Encoding Complexity Control

The goal of complexity control in our SCC approach is
twofold: 1) reducing the actual encoding complexity to any
given target level with minimal visual distortion and 2) ensur-
ing the subjective video quality while reducing the encoding
complexity. Given the established C(di ) and �D(di ), we can
achieve the first goal for each video frame by removing the
subjective-driven constraint away from (5)

min
{Np }3

p=0

3∑

p=0

�D(p)Np s.t.
1

I

3∑

p=0

C(p)Np =Tc,

3∑

p=0

Np = I

(14)

where Np is the number of LCUs with maximum depth
di = p in the frame and I is the total number of LCUs in
the frame. Note that the sum of Np is equivalent to I . After
solving (14), {Np}3

p=0 can be obtained. Once {Np}3
p=0 are

achieved, the objective distortion is minimized and fixed at
a given target complexity. Next, the subjective quality needs
to be favored according to the subjective-driven constraint, at
the same optimized objective distortion. To be more specific,
LCUs with greater weight wi are the salient regions, and
their visual quality should be preferred by assigning larger
maximum depth di . Assuming that S(wi ) indexes the sorted wi

with an ascending order, the following can be obtained to
make di satisfy the subjective-driven constraint in (5):

di =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, S(wi ) ≤ N0

1, N0 < S(wi ) ≤ N0 + N1

2, N0 + N1 < S(wi ) ≤ N0 + N1 + N2

3, S(wi ) > N0 + N1 + N2

(15)

where N0, N1, and N2 have been obtained by solving (14),
representing the numbers of LCUs with maximum depth being
0, 1, and 2 in each frame. From (15), we can observe that the
LCU with greater weight is endowed with larger maximum
depth, indicating higher visual quality. In this way, the subjec-
tive quality can be favored. Through working out (14) and (15),
the optimization problem of (5) can be solved to output
various maximum depths for LCUs in a video frame. Now,
the remaining tasks are to solve (14) and to sort the averaged
weight wi of each LCU.

1) Solving (14): Actually, the problem in (14) can be
seen as a general multiconstrained knapsack problem [42]
in integer programming. Thus, we can utilize the existing
tools for the knapsack problem to solve (14). As we know,
the knapsack problem is NP − hard [42], meaning that it
is intractable to directly obtain an optimal solution to (14).



98 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 26, NO. 1, JANUARY 2016

Fig. 5. Example of allocating maximum depth to each LCU in terms of the
sorted weight.

Fig. 6. Examples for the maximum depth distribution of LCUs in two frames.
(a) and (b) Fourth frame of RaceHorses. (c) and (d) 272nd frame of Johnny.
Note that the maximum depths of LCUs in (a) and (c) are all equivalent to 3.

Fortunately, in the past decades, several tools were proposed
for solving the knapsack problem [43], including the
branch-and-bound, dynamic programming, state-space
relaxation, and preprocessing algorithms. In this paper,
we employ the branch-and-bound algorithm to solve (14),
as it is widely applied for solving the knapsack problem. The
running time of the branch-and-bound algorithm in our work
is less than 0.1 s, far less than the encoding time of the whole
sequence. Note that the branch-and-bound algorithm needs to
be conducted only once, as its results can be used for all the
frames at a given target complexity.

The branch-and-bound algorithm was first proposed in [44].
Its key idea is to branch a large solution set into several
small subsets and to find the optimal solution of each small
subset, as the upper/lower bound of the ultimate optimal
solution. By continuously branching the subsets, the upper
and lower bounds are gradually approaching with each other,
until the final solution is obtained. The solving process of (14)
using the branch-and-bound tool is presented in the Appendix.
Finally, the ultimate optimal solution {Np}3

p=0 can be
obtained. As such, we can get the optimal amounts of LCUs
under four different maximum depths, i.e., p = 0, 1, 2,
or 3. However, the explicit assignment of maximum depths to
different LCUs has not been worked out yet. Actually, it can
be solved upon (15) with the following scheme on sorting wi .

Sorting wi : As can be observed in (15), the final output
of our SCC approach can be acquired, once the averaged
weights wi of all the LCUs are sorted with an ascending
order. Here, the quicksort algorithm [45] is used for sorting wi .
In our work, the running time of quicksort algorithm for
a 1920 × 1080 video frame is less than 1 ms. Due to its
high computing speed, the consuming time of sorting can be
ignored compared with the encoding time of video frames.

TABLE II

TEST VIDEO SEQUENCES

TABLE III

PARAMETER SETTINGS OF HM 14.0

Next, based on the sorted index S(wi ), the corresponding LCU
can be allocated with a maximum depth di according to (15).
Fig. 5 shows an example of allocating maximum depths to
LCUs, in terms of the sorted index S(wi ). Our SCC approach
can guarantee that larger maximum depth is allocated to the
LCUs with larger weights. In this way, the subjective quality
can be favored.

Finally, the complexity control in formulation (5) can
be solved, and we can obtain the maximum depth for
each LCU, as the output of our approach. Fig. 6 shows
examples of the maximum depth distribution of LCUs using
our SCC approach, based on the weight maps of the two
video frames shown in Fig. 1. From Fig. 6, we can observe
that the encoding complexity is decreased via reducing the
maximum depths of LCUs with relatively smaller weights.
For instance, the grass region in RaceHorses has smaller
weights (as it draws little human attention) such that smaller
maximum depths are imposed to the LCUs of grass.

V. EXPERIMENTAL RESULTS

In this section, experiments were conducted to val-
idate the effectiveness of the proposed SCC approach.
The effectiveness was evaluated from four aspects: 1) the
control accuracy; 2) objective visual quality; 3) subjec-
tive peak signal-to-noise ratio (PSNR); and 4) Bjøntegaard
delta (BD)-rate/BD-PSNR. In the experiments, we com-
pared our approach only with the state-of-the-art appro-
aches [7] and [23]. Note that we did not compare with [36],
which is also a state-of-the-art approach, as it cannot precisely
control the complexity.4

4In [36], a global complexity factor, ranging from 0 to 1, needs to be set for
different encoding complexities. However, the time saving is proportional only
to the predefined complexity factor, but does not satisfy the specific target.
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TABLE IV

CLASS B: THE RESULTS OF HEVC ENCODING COMPLEXITY CONTROL FOR OUR AND OTHER TWO APPROACHES

A. Test Sequences and Parameter Setting

The test video sequences were chosen from Classes B–E
in the standard HEVC test sequence database, as shown
in Table II. For thoroughly evaluating the performance of our
approach, all the test sequences were divided into two sets:
with and without rate control. In the rate-control set, the
video sequences were compressed at two target bitrates, by the
default rate-control scheme. The quantization parameter (QP)
value for the first I frame was set to be 32 by default,
and the QP values for other frames were determined by the
rate-control scheme. In the nonrate-control set, the video
sequences were compressed with four fixed QPs (i.e., 22,
27, 32, and 37), to evaluate the performance of BD-rate and
BD-PSNR.

The encoder configuration we used in all the experi-
ments is low-delay P main,5 following the test configurations
of [7] and [23]. Since HEVC common test conditions do not
test Class A in the low-delay case, this class was not included
in our experiments. Class F was not tested as well, as it is with
noncamera captured content. Note that all the test sequences
are different from those for training in Section IV.

All the experiments were implemented on HM 14.0
platform, with the typical parameter settings presented
in Table III. From Table III, we can observe that the maximum
LCU depth was initially set to 3. The LCU size was chosen to
be 64×64 to allow all possible CU sizes, i.e., 64×64, 32×32,
16 × 16, and 8 × 8, for optimizing the distortion in HEVC.
Some fast encoding modes such as fast encoder setting, fast
decision for merge RD cost, and TransformSkip were enabled
in our approach. Our approach may be incorporated with
other fast encoding methods, with the relationships of Section
IV being retrained. It is worth pointing out that the approach
in this paper and the approaches in [7] and [23] all used the
same parameter settings on the HM 14.0 platform.

5Our approach can also be applied to other configurations, such as random
access, but the relationships of Section IV need to be retrained.

B. Evaluation of Control Accuracy

The experimental results in Tables IV–VII demonstrate
the accuracy of controlling encoding complexity in the
proposed SCC approach. In Tables IV–VII, the encoding
complexity is normalized to be the form of percentage,
via being divided by the encoding time of conventional
HM 14.0. Note that the approach in this paper and the
approaches in [7] and [23] are all reduced to the conventional
HM 14.0, when the encoding time is set to 100%. From
Tables IV–VII, one can observe that our SCC approach
is capable of precisely controlling the encoding complex-
ity of HEVC. Specifically, the actual encoding complex-
ity is quite close to the target complexity. Among all the
test sequences across different bitrates, the least error is
only 0.2% (Cactus 20% @5 Mbits/s). Except from Class
D sequences at 20% complexity, the largest control error
is 4.6% (BasketballDrive 80% @5 Mbits/s). Our approach
does not perform well in Class D sequences at 20% target
complexity, since the number of LCUs is such so small
(i.e., each frame has only 18 LCUs with size being 64 × 64)
that the control accuracy is difficult to be guaranteed.

We also compare the accuracy of complexity control
among our SCC and two other approaches [7], [23]
in Tables IV–VII. The comparison results demonstrate that
our SCC approach outperforms other two approaches in terms
of control accuracy. Given the same target complexity, the
actual encoding complexity of our SCC approach has smaller
errors than other two approaches, for almost all the cases.
In addition, our approach is capable of controlling encoding
complexity with a larger range. More specifically, as can be
seen from Tables IV, V, and VII, our SCC approach is able
to control the complexity as low as 20% with little deviations
from the target, while [7] and [23] cannot succeed in this task.

Apart from the accuracy, the complexity control stability is
another component in evaluating the control accuracy. Fig. 7
compares the actual encoding complexity per frame for the
approach in this paper and the approaches in [7] and [23]
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TABLE V

CLASS C: THE RESULTS OF HEVC ENCODING COMPLEXITY CONTROL FOR OUR AND OTHER TWO APPROACHES

TABLE VI

CLASS D: THE RESULTS OF HEVC ENCODING COMPLEXITY CONTROL FOR OUR AND OTHER TWO APPROACHES

The variances of actual encoding complexity across different
frames are also provided in Fig. 7, to quantify the stability of
complexity control. From Fig. 7, we can find that our approach
is far more steady than other two approaches, in controlling
the encoding complexity of HEVC across frames.

C. Assessment of Objective Quality

Tables IV–VII also present the Y-PSNRs of all the
test sequences for our approach. It can be observed from
Tables IV–VII that our SCC approach has relatively small
Y-PSNR reductions for all the video sequences
when the encoding complexity decreases to 80%.
Specifically, the Y-PSNR reduction is up to 0.06 dB
for Class B (BasketballDrive@5 Mbits/s), 0.17 dB for
Class C (PartySecne@4 Mbits/s), 0.42 dB for Class D
(Racehorses@500 kbits/s), and 0.02 dB for Class E
(Johnny and Vidyo4@500 kbits/s). Besides, the averaged

Y-PSNR reduction is 0.04 dB for Class B, 0.14 dB for
Class C, 0.34 dB for Class D, and 0.015 dB for Class E.
When the encoding complexity drops to 60%, there exists
larger Y-PSNR decrease. For example, the Y-PSNR reduction
is up to 0.22 dB for Class B (Cactus@10 Mbits/s), 0.50 dB
for Class C (PartySecne@4 Mbits/s), 0.83 dB for Class D
(RaceHorses@500 kbits/s), and 0.07 dB for Class E
(Johnny@500 kbits/s). In addition, the Y-PSNR averagely
drops by 0.17, 0.37, 0.66, 0.055, for Classes B–E. Similarly,
the larger Y-PSNR loss is incurred when we set 40% and 20%
encoding complexity. In a word, we can find out that the loss
of both maximal and averaged Y-PSNRs increases along with
the reduced encoding complexity.

Tables IV–VII also compare the Y-PSNR results among our
SCC and the approaches in [7] and [23]. We can observe that
our approach in most cases can provide higher Y-PSNRs than
other two approaches, given the same target complexity. How-
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TABLE VII

CLASS E: THE RESULTS OF HEVC ENCODING COMPLEXITY CONTROL FOR OUR AND OTHER TWO APPROACHES

Fig. 7. Actual encoding complexity (Rc) comparisons per frame among
the approach in this paper and the approaches in [7] and [23]. The target
complexity for all the four sequences is 60%. For other targets, the fluctuations
are similar. (a) Cactus. (b) BQMall. (c) BasketballPass. (d) Johnny.

ever, for some cases with 40% complexity, the Y-PSNRs of
our approach are a bit smaller than [23]. This is due to the fact
that the actual encoding complexity of [23] is much larger than
that of our approach, thus resulting in a bit higher Y-PSNRs.
It can be further observed from Tables IV–VII that
both [7] and [23] are incapable of reducing the encoding

complexity as low as 20% (all above 35%), and thus their
corresponding PSNRs at 20% are not presented.

Fig. 8 shows the comparison of �PSNR per frame for
the approach in this paper and the approaches in [7] and
[23]. In Fig. 8, �PSNR is the Y-PSNR reduction when
the target complexity is decreased from 100% to 60%.
To quantify the quality fluctuation across different frames,
the variances of �PSNR are provided in Fig. 8. We can
observe from Fig. 8 that our approach can always offer
steady Y-PSNR reduction for each frame, with relatively
small variances. In particular, �PSNR of our SCC approach
across different frames remains nearly constant for Cactus
and Johnny, as their variances are only 0.0010 and 0.0005,
respectively. However, for other two approaches, �PSNR
across frames fluctuates at a large range, especially for
BasketballPass, the variances of which are 0.1109 and 0.1302
for [7] and [23], respectively. In fact, this kind of large
quality fluctuation has an adverse effect on the overall visual
quality.

D. Assessment of Subjective PSNR

We follow the way of [46] to define the subjective
Y-PSNR for reflecting the subjective quality. Wang and Li [47]
have proved that with saliency weighting, the conventional
PSNR metric can be converted to a competitive metric called
subjective Y-PSNR, which has a much higher correlation
with the subjective quality. Therefore, the subjective Y-PSNR,
which weighs Y-PSNR according to the saliency value of each
pixel, is adopted in this paper. According to [47], the subjective
Y-PSNR SPSNR can be calculated as

SMSE =
∑N

n=1 vn(I ′
n − In)2

∑N
n=1 vn

(16)

and

SPSNR = 10 log

(
2552

SMSE

)
(17)
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Fig. 8. Comparisons of Y-PSNR reductions per frame among the approach
in this paper and the approaches in [7] and [23]. The target complexity for
all the four sequences is 60%. (a) Cactus. (b) BQMall. (c) BasketballPass.
(d) Johnny.

TABLE VIII

AVERAGED SUBJECTIVE AND OBJECTIVE Y-PSNR IMPROVEMENT

OVER [7] AND [23]

where In and I ′
n are the intensities of the nth pixel in the

original and encoded frames, respectively. Besides, recall that
N is the total amount of pixels in one frame and that vn is
the saliency weight of the nth pixel.

Then, we tabulate in Table VIII the averaged subjective
Y-PSNR improvement of our approach over [7] and [23].
As we can observe from Table VIII, our approach is able
to yield higher subjective Y-PSNRs than [7] and [23] for all
the cases. This verifies the effectiveness of the subjective-
driven constraint. Actually, as aforementioned, the actual
encoding complexity of [7] and [23] is far more than 20%
(all above 35%) when the target complexity is 20%. Thus,
their subjective PSNRs at 20% complexity are not reported
in Table VIII.

Figs. 9 and 10 show some frames of video sequences
compressed by the approach in this paper and the approaches
in [7] and [23]. From Figs. 9 and 10, we can observe that
there exist evident block effects and severe visual distortion

Fig. 9. The 32nd frames of sequence Racehorses compressed by the approach
in this paper and the approaches in [7] and [23], at a 60% encoding complexity.
(a) Racehorses with our approach at 300 kbits/s. (b) Racehorses with [7] at
300 kbits/s. (c) Racehorses with [23] at 300 kbits/s.

Fig. 10. The 54th frames of sequence BQMall compressed by the approach in
this paper and the approaches in [7] and [23], at a 60% encoding complexity.
(a) BQMall with our approach at 500 kbits/s. (b) BQMall with [7] at 500
kbits/s. (c) BQMall with [23] at 500 kbits/s.

in [7] and [23]. By contrast, our approach has a better visual
quality. For example, we can easily find in Fig. 9 that the left
eye of the horse nearly disappears for [7] and [23], which may
cause wretched subjective feelings.
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TABLE IX

BD-RATE AND BD-PSNR COMPARISONS, WITH HM 14.0 AS AN ANCHOR

E. Assessment of BD-Rate and BD-PSNR

In this section, we focus on evaluating the performance
of our approach with fixed QPs and disabled rate control.
We tested six sequences from different classes. As shown
in Table II, these sequences include Kimono from Class B,
PartyScene and Racehorses from Class C, BlowingBubbles and
BQSquare from Class D, and Fourpeople from Class E. The
six sequences were tested with different target complexities
(80%, 60%, 40%, and 20%), at four fixed QPs (22, 27, 32,
and 37). The BD-rate and BD-PSNR were then calculated
for each sequence at different encoding complexities, using
the method in [48]. Table IX reports the results of BD-rate
and BD-PSNR averaged over all the six test sequences.
Since [7] and [23] cannot control the complexity to 20%, their
corresponding BD-rate and BD-PSNR results at 20% are not
reported. It can be observed from Table IX that compared
with [7] and [23], our approach can achieve higher Y-PSNRs at
the same bitrates, or save some bitrates at the same distortion.
Besides, our approach, especially at low complexity, can
significantly improve the control accuracy over [7] and [23].

VI. CONCLUSION

In this paper, we proposed a novel approach, namely, SCC,
for encoding complexity control in HEVC. It was argued that
the maximum depth of each LCU exerts an important effect on
the encoding complexity of HEVC. Therefore, with numerical
analysis, we first investigated the relationship between the
maximum depth and encoding complexity. The reduced maxi-
mum depth can decrease encoding complexity, but at the cost
of visual distortion. Thus, we further explored the influence
of maximum depth on visual distortion. Accordingly, we pro-
posed an optimization formulation to control the encoding
complexity of HEVC with minimal visual distortion. Based on
the visual attention model, this formulation also favors subjec-
tive visual quality, by allocating more complexity resources to
LCUs with greater weights. The experimental results verify the
effectiveness of our approach. On the one hand, in comparison
with other two approaches, our approach is capable of steadily
controlling the encoding complexity of HEVC with higher
accuracy. On the other hand, our approach can offer superior
visual quality over other two state-of-the-art approaches.

There may exist three directions for the future work.
1) Our work in this paper considers only two simple

visual attention models. Currently, with the advances
in the area of visual attention modeling, much work
related to the SCC approach remains to be developed for
further improving subjective visual quality. For example,

one future goal of our SCC approach should include the
integration of bottom-up and top-down visual attention
models to provide more reasonable weight maps.

2) Our work in its present form focuses only on allocating
complexity resources to LCUs. Yet, there is no
complexity budget scheme to adjust the complexity
allocation in frame level, which may further improve
the accuracy of complexity control. This provides a
promising trend for the future work.

3) Many fast encoding and early termination methods
are proposed for HEVC. It is quite an interesting
future work to incorporate our approach with those fast
encoding methods, to further decrease and control the
encoding complexity of HEVC.

APPENDIX

A. Proof of Lemma 1

The 1-D optimal fitting x0 for data group {�Dk(0)}K
k=1 can

be calculated via solving

min
x0

K∑

k=1

(�Dk(0) − x0)
2 (18)

and we have

min
x0

{
K x2

0 − 2
K∑

k=1

�Dk(0)x0 +
K∑

k=1

�Dk(0)2

}
. (19)

Taking the derivative of x0 in (19), we can obtain the optimal
value of x0 satisfying the least-square error of (18)

x0 = 1

K

K∑

k=1

�Dk(0). (20)

Similarly, we have

1

K

K∑

k=1

�Dk(1),
1

K

K∑

k=1

�Dk(2) and
1

K

K∑

k=1

�Dk(3)

for the optimal fitting of {�Dk(1)}K
k=1, {�Dk(2)}K

k=1, and
{�Dk(3)}K

k=1.
Next, we extend the optimal fitting to be 2-D. Given

the above optimal fitting data (0, (1/K )
∑K

k=1 �Dk(0)),

(1, (1/K )
∑K

k=1 �Dk
k (1)), (2, (1/K )

∑K
k=1 �Dk(2)), and

(3, (1/K )
∑K

k=1 �Dk(3)), we need to fit only on these
four 2-D data with minimal error. According to Lagrange
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interpolation principle, a third-order polynomial equation is
able to fit the four 2-D data with zero error

�D(di ) = a0 + a1di + a2di
2 + a3di

3, di ∈ {3, 2, 1, 0}.
(21)

Upon (21), coefficients a0, a1, a2, and a3 can be calculated
through solving the following matrix equation:

⎡
⎢⎢⎣

1 0 02 03

1 1 12 13

1 2 22 23

1 3 32 33

⎤
⎥⎥⎦

⎡
⎢⎢⎣

a0
a1
a2
a3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

K

K∑

k=1

�Dk(0)

1

K

K∑

k=1

�Dk(1)

1

K

K∑

k=1

�Dk(2)

1

K

K∑

k=1

�Dk(3)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(22)

where 0, 1, 2, and 3 in the 4 × 4 matrix (except the first
column) at the left-hand side represent four different values
of di . Note that such a 4 ×4 matrix is a Vandermonde matrix,
and obviously, it is of full rank. Thus, there exists one and
only one solution to (22). The only solution for coefficients
a0, a1, a2, and a3 can be obtained by solving (22)

⎡

⎢⎢⎣

a0
a1
a2
a3

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

1 0 02 03

1 1 12 13

1 2 22 23

1 3 32 33

⎤

⎥⎥⎦

−1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

K

K∑

k=1

�Dk(0)

1

K

K∑

k=1

�Dk(1)

1

K

K∑

k=1

�Dk(2)

1

K

K∑

k=1

�Dk(3)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (23)

Finally, this lemma is proved.

B. Solving (14) With the Branch-and-Bound Algorithm

1) Step 1—Relax: Reduce the integer programming problem
to a linear programming problem. By removing the constraint
that all the variables {Np}3

p=0 are integers, the original integer
programming problem of (14) can be relaxed to a common
linear programming problem, denoted by L. The optimal
solution to L can be yielded as (γ0, γ1, γ2, γ3). If all the
elements of the solution are integers, the algorithm stops for
outputting the final solution to (14). Otherwise, we need to
record the objective value of (γ0, γ1, γ2, γ3) as Z , the lower
bound of the optimal objective value Z . Meanwhile, we can
find one feasible solution to (14), the objective value of which
is recorded as Z , the upper bound of Z .

2) Step 2—Branch: Split the solution space into
smaller subspaces. Specially, one noninteger element of
(γ0, γ1, γ2, γ3) needs to be chosen to construct two new
constraints. Taking the example of choosing γ1, the two
constraints are N1 ≤ 	γ1
 and N1 ≥ 	γ1
 + 1, where 	γ1

indicates the largest integer not exceeding γ1. Then, the two

constraints are added to L, respectively, constructing two new
subproblems L1 and L2. Similarly, the optimal solutions to
L1 and L2 are calculated by linear programming.

3) Step 3—Bound: Calculate the upper/lower bound of each
branch. Specially, there exist three cases, in terms of the
solution to L1 and L2.
Case 1: Either L1 or L2 has an integer solution. If the

objective value of the branch with an integer solution
is smaller than Z, then this value is recorded as a
new Z. The objective value of the other branch is
compared with Z. If it is larger than Z , this branch is
discarded or pruned. Otherwise, the algorithm moves
to Step 2, in which this branch is recursively divided.

Case 2: Neither L1 nor L2 has an integer solution. The
branch whose objective value is larger than Z is
discarded. The other branch moves to Step 2, and
its objective value is recorded as a new Z . If both
objective values of L1 and L2 are less than Z, the
two values are compared with each other, of which
the smaller one is recorded as a new Z .

Case 3: There is no solution (both integer and noninteger)
to L1 or L2. Then, the branch with no solution is
discarded directly.

Steps 2 and 3 are recursively executed for (γ0, γ1, γ2, γ3)
until all the branches cannot be further branched. Finally, the
ultimate optimal solution {Np}3

p=0 can be obtained.
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