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Abstract—Recently, video conferencing has been popular in
multimedia systems, such as FaceTime and Skype. In video con-
ferencing, almost every frame contains a human face. Therefore,
it is important to predict human visual attention on face videos
by saliency detection, as saliency may be used as a guide to
the region-of-interest (ROI) for the content-based applications of
face videos. In this paper, we propose a data-driven approach
for saliency detection in face videos. From the data-driven
perspective, we first establish an eye tracking database that
contains fixations of 76 face videos viewed by 40 subjects. Upon
the analysis of our database, we find that visual attention is
significantly attracted by faces in videos. More importantly, the
attention distribution within face regions varies with regard to
mouth movement. Since previous works have investigated that it
is efficient to model face saliency in still images using a Gaussian
mixture model (GMM), the variation of visual attention in vi deos
can be modeled by dynamic GMM (DGMM). Accordingly, we
propose to adopt the particle filter (PF) in modeling DGMM for
saliency detection of face videos, so called PF-DGMM. Finally,
the experimental results show that our PF-DGMM approach
significantly outperforms other state-of-the-art approaches in
saliency detection of face videos.

Index Terms—Face video, visual attention, Gaussian mixture
model.

I. I NTRODUCTION

DURING the past two decades, saliency detection has
become increasingly popular due to its wide application

in multimedia processing tasks, such as object segmentation
[1]–[5], video quality assessment [6], perceptual video coding
[7] and thumbnail generation [8]. Recently, object detection
has also taken advantage of visual saliency in segmenting
salient objects, called salient object detection [9]–[14]. Visual
saliency [15] indicates how much each pixel or region attracts
human attention. The first study on visual saliency was per-
formed on images in 1998, when Itti and Koch [16] found that
intensity, color and orientation information in an image can be
employed to predict image’s saliency map. Afterwards, they
extended their work to video saliency detection [17]. Recently,
a great number of approaches, such as [18]–[29], have been
proposed to model saliency in videos. Those saliency-detection
approaches are generally driven by biologically-inspiredfea-
tures, which rely heavily on the unmatured study of the human
visual system (HVS).
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Most recently, data-driven approaches [30]–[42] which learn
to bridge the gap between image/video features and saliency,
have become prevalent in both video and image saliency
detection. These data-driven approaches have found that some
high-level features are indeed attractive to visual attention.
In particular, face is an obvious high-level feature to attract
visual attention, and thus many top-down approaches have
incorporated face as a channel for saliency detection of face
images [39]–[42]. Specifically, Cerfet al. [39] investigated
from eye tracking data that face is strongly correlated with
visual attention, and they thus proposed to combine face
channel with Itti’s model [16] for detecting saliency of images
including a face. Later, Zhaoet al. [40] found that the face
and orientation channels are usually more important than color
and intensity channels. Therefore, they learnt the optimal
weights of different channels using least square fitting of
eye tracking data, further improving the saliency detection
performance of [39]. Most recently, Xuet al. [42] proposed
to model the saliency distribution of the face region using a
Gaussian mixture model (GMM) [43], which is learnt from the
training data using the conventional expectation maximization
(EM) algorithm. The above approaches consider images with
faces, significantly advancing the development of the top-down
saliency detection of images.

Face videos [44] are currently undergoing explosion of
growth, due to the emerging video conferencing applications,
such as FaceTime and Skype. Actually, face also plays an
important role in predicting saliency of video conferencing,
similar to its important role in saliency detection of face
images. Moreover, as we analyze in this paper (Section III-C),
face attracts more visual attention in videos (77.7% fixations)
than that in image (62.3% fixations). Thus, face is a significant
cue for saliency detection in videos. However, most of the
existing video saliency detection approaches [17], [18], [21]–
[23], [27]–[29] make use of the bottom-up information, such
as motion vector, flicker, as well as spatial and temporal
correlation, to detect video saliency. Most recently, [45]has
been proposed to detect saliency in multiple-face videos by
finding which face attracts the most visual attention, but there
is no work on modelling distribution of attention within a
single face. On the other hand, although videos are composed
of images, they are fundamentally viewed differently, because
the dynamic changes of pictures in videos can be seen as
saliency cues. Thus, video saliency cannot be precisely pre-
dicted merely by the assembly of image saliency, as shown
in Figure 1. Figure 1 further shows that saliency of face can
be modeled as dynamic GMM (DGMM) in videos, in which
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Fig. 1: The comparison of video saliency maps generated by our approach and [42]. Note that [42] is a saliency detection approachfor images, while ours
work on videos. Here, the saliency maps of [42] are generatedby regarding each video frame as a still image. The visual attention distribution by 40 subjects
is also shown in this figure. When the mouth moves, visual attention is transferred from eye regions to mouth region.

the GMM distribution of visual attention in face images [42]
varies across video frames. It is because visual attention on
the mouth increases when the mouth is moving.

In this paper, we establish an eye tracking database for face
videos and find that visual attention is attracted by faces in
videos. We further find from our database that attention on
face prefers to distributing in the regions of facial features, i.e.,
nose, eyes and mouth. By considering the attention distribution
of nose, eyes and mouth as different Gaussian models, GMM
is applied to model intra face saliency in each video frame.
Beyond, we find that attention distribution on face and facial
features vary with respect to face size and mouth movement.
Upon these findings, we propose a particle filter based DGMM
(called PF-DGMM) approach to detect intra saliency of face
videos, modeled by DGMM distribution. In contrast to Xu’s
static learnt GMM [42] for image saliency detection, the
parameters of GMM are dynamically modified according to
the mouth movement to obtain the DGMM distribution in
our approach. Such dynamic parameters can be learnt from
training fixations in our data-driven approach. It is worth
pointing out that particle filter (PF) [46] is a sequential
model estimation technique that is suitable for monitoring
dynamic processes [47]. Thus, for each processed video frame
our PF-DGMM approach updates the parameters of GMM,
i.e., mean, standard deviation and weights of each Gaussian
component, by adopting the PF algorithm. To be more specific,
we take the parameters of Gaussian components as particles,
and constantly update the weights of the particles to monitor
dynamic changes of attention in face videos, according to face
size and mouth movement.

The PF-DGMM approach is proposed in this paper for
saliency detection in face videos, which is based on the
learned GMM distribution of our previous approach [42] for
face images. However, our PF-DGMM approach models the
saliency distribution of face in videos using dynamic GMM
(DGMM), in which the GMM parameters vary across video
frames. In contrast, our previous approach [42] only focuses on
static GMM distribution of face saliency for images. Towards
DGMM, the dynamic changes of GMM parameters are learned
in the PF-DGMM approach by designing a PF, whereas the
static GMM parameters are estimated in [42] by the EM

algorithm. The main contributions of this paper are listed as
follows.

• We establish an eye tracking database1 for face videos,
which contains the fixations of 40 subjects viewing 76
single-face videos.

• We analyze the factors that influence the attention dis-
tribution on face videos, via mining our established eye
tracking database.

• We propose a PF-DGMM approach for learning DGMM
distribution as detected saliency of face videos, in light
of our analysis on eye tracking database.

There are some potential applications for our saliency detec-
tion approach. For example, in compressing video conferenc-
ing, the bits can be assigned according to the face saliency
detected by our approach, which satisfies the dynamic distribu-
tion of human attention within the face region. Consequently,
the perceptual quality can be improved in video conferencing
applications. Furthermore, in other applications, e.g., encoding
or rendering video conferencing, the limited computational
resources can be also allocated according to the face saliency
detected by our PF-DGMM approach.

II. L ITERATURE REVIEW

The existing approaches on saliency detection can be classi-
fied into two categories: either heuristic or data-driven models.
In the following, we briefly review the video saliency detection
literature on these two categories, respectively.

A. Heuristic approaches

Heuristic approaches aim at developing the computational
models on image features for saliency detection, according
to the understanding of the HVS. During the past decade,
a large number of heuristic saliency detection approaches
[17]–[21], [24]–[28] have been proposed for video saliency
detection. At the beginning, Ittiet al. [17] found that the
dynamic features of motion and flicker contrast are correlated
with visual attention. Therefore, [17] combined these two
dynamic features with Itti’s image saliency model [16] for

1The database is available onlinehttps : //github.com/RenY un2016.
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detecting saliency in videos. Later, a novel feature called
surprisewas defined in [18] to measure how visual changes
attract human attention, based on the Kullback-Leibler (KL)
divergence between spatio-temporal posterior and prior beliefs.
Given the feature ofsurprise, [18] developed a Bayesian
framework for video saliency detection. Besides, some other
Bayesian framework related approaches, e.g., [19] and [20],
were proposed for video saliency detection. Recently, some
advanced video saliency detection approaches [24], [25] have
been proposed, also from the biologically-inspired aspect. For
example, Linet al. [25] utilized earth mover’s distance (EMD)
to measure the center-surround difference in spatio-temporal
receptive filed, yielding dynamic saliency maps for videos.
Hou et al. [26] proposed to explore the information divergence
model for image saliency detection, and then information
divergence is exploited to improve Bayesian surprise for
saliency detection in videos. Besides, [27] and [28] analyzed
that some compressed domain features (e.g., motion vector)
are highly correlated with heuristic saliency detection features
(e.g., object motion), and they applied these features to video
saliency detection. Recently, saliency detection has beenin-
corporated for detecting object-level saliency [9]–[14],in the
field of salient object detection. In particular, [11] proposed
a spatiotemporal saliency energy function as a heuristic cue,
which encourages the spatiotemporal consistency of video
saliency maps, significantly improving the performance of
salient object detection. In addition, low rank decomposition
was applied in [12], [13] to detect salient objects.

However, the understanding of the HVS is still in its infancy,
and heuristic saliency detection thus has a long way to go
yet. Recently, machine learning techniques have emerged as
a possible way to generalize visual attention model from eye
tracking data. They can be seen as data-driven approaches.
These data-driven video saliency detection approaches are
reviewed in the following.

B. Data-driven approaches

The central of data-driven saliency detection approaches
is learning visual attention models from eye tracking data,
which are obtained using an eye tracker to record fixations of
several subjects on displayed images or videos. Accordingly,
the existing data-driven saliency detection approaches can be
further categorized into static and dynamic saliency prediction
tasks. The static task mainly refers to image saliency detection,
whereas dynamic tasks primarily concentrate on video saliency
detection. In the following, we review the data-driven saliency
detection approaches from the aspects of these two tasks.

In static saliency detection, there is a large number of
data-driven approaches for generic images [30]–[33], [48]–
[52] and specific images [37]–[42]. For detecting saliency
of generic images, the representative approach is [30]. In
[30], a linear SVM classifier is learnt from eye tracking
data (1003 images observed by 15 subjects), in which high-
, middle- and low-level features are integrated together in
predicting saliency regions. Besides, Huaet al. [31] proposed
to learn middle-level features, i.e., gists of a scene, as the
top-down cue for detecting static saliency of generic images.

Instead of the aforementioned hand-tuned features, the latest
work of [53] automatically learns hierarchical features for
image saliency detection. Most recently, deep neural networks
(DNNs) have been widely used in the saliency detection of
generic images. Deep gaze I [48] was proposed to apply DNNs
to automatically learn effective features for saliency detection.
Huang et al. [32] have developed the saliency in context
(SALICON) method to learn high-level semantic features of
objects in saliency detection, on the basis of DNNs. A shallow-
structured DNN [33] was explored to further advance image
saliency detection. Meanwhile, Saumyaet al. [49] proposed a
new saliency map model formulated by generalized Bernoulli
distribution, which is learnt by a DNN architecture. DNNs
have also advanced the state-of-the-art salient object detection
[50]. Some new DNN architectures [51], [52] were developed
to simultaneously deal with saliency detection and salient
object detection.

There also exist several works on static saliency detectionof
some specific images. Focusing on gray images with natural-
scene, a gaze-attentive fixation finding engine (GAFFE) [37]
was proposed to learn the bandpass filters of both luminance
and contrast from eye tracking data, which are used as the low-
level features for saliency detection. Afterwards, dictionary
learning was applied in [38], together with sparse coding, to
learn the patterns of salient and non-salient regions for gray
images with nature scene. Beyond, more approaches [39]–[42]
work on predicting saliency of images with face, since face
is an obvious cue for drawing visual attention. For example,
Cerf et al. [39] found out that face is an important top-down
feature to receive attention, as the faces were fixed on in88.9%
within two fixations (7 subjects viewing 150 images with face)
in their eye tracking experiment. Therefore, they proposedto
combine Viola-Jones (VJ) face detector [54] with Itti’s model
[16] for saliency detection over images with face. Afterwards,
[40] was proposed to learn the weights of top-down features
(i.e., face) using least square fitting of eye tracking data,
thus improving the saliency detection performance of [39].
Later, Jianget al. [41] developed some high-level features
that are related to human faces, to predict saliency in a
scene with multiple faces. Those high-level features include
face size, pose and location. For single-face image, [42] has
been proposed to precisely model saliency of face region, via
learning the fixation distributions of face and facial regions.

In dynamic saliency detection, most existing data-driven ap-
proaches [34]–[36], [55]–[60] concentrate on generic videos.
In particular, Rudoyet al. [34] proposed a novel method
to predict the dynamic saliency of generic videos, which
learns the conditional saliency map from fixations across
several consecutive video frames. As a result, the inter-frame
correlation of visual attention is taken into account for video
saliency detection. In [55], Zhaoet al. proposed a fixation
bank approach for video saliency detection, in which a bank
is built from the primitive low-level features of color, inten-
sity, orientation and motion. Recently, both spatio-temporal
coherency and low rank analysis have been applied [35] for
locating salient motion in videos. In [56], dynamic adaptive
whitening saliency (AWS-D) was proposed for detecting video
saliency, which reduces the perceptual redundancy in locating
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(a) 66-point PDM (b) Mouth

Fig. 2: An example of PDM for the face and mouth.

salient pixels based on the second-order statistics. The most
recent work of [57] studied how to apply learning algorithms
in effectively integrating low-level and high-level features,
for video saliency detection. Rather than free-view saliency
detection, a probabilistic multi-task learning method wasde-
veloped in [36] for the task-driven video saliency detection, in
which the “stimulus-saliency” functions are learnt from the eye
tracking data as the top-down attention models. In [58], Mathe
and Sminchisescu established a new eye tracking database
and then proposed saliency detection models, for the task of
action recognition rather than free-view. In [59], Mauthner
et al. proposed an encoding based video saliency detection
approach for the task of activity recognition. Different from the
above free-view and task-driven saliency detection approaches,
[60] proposed a space-time saliency approach, which locates
salient frames, rather than pixels or objects. However, the
above approaches were designed for generic saliency detection
of videos. They are thus ineffective in saliency detection of
the specific face videos, since they do not explore dynamic
variation of attention distribution within face regions.

For specific videos, [45] extended the work of [41] to
detect saliency in multiple-face videos by proposing multiple
hidden Markov model (M-HMM). In [45], M-HMM is used
to predict the possibility of each face on attracting visual
attention. Although the face has been considered as the high-
level feature for saliency detection of generic videos, few
works aim at modelling the saliency distribution within face
region for face videos. In fact, the saliency distribution of
face is dynamic, which may be influenced by actions of face
like mouth movement. Thereby, this paper establishes an eye
tracking database for face videos, and then we learn from our
database, to predict dynamic distribution of face saliency.

III. D ATABASE AND ANALYSIS

A. Database

To our best knowledge, there exists no eye tracking database
on face videos. Therefore, we conducted the eye tracking
experiment to obtain an eye tracking database for several
videos containing faces. The database is composed of 76 face
videos selected from the 300-VW [61] database and YouTube.
Among them, 71 videos contain one face, and the rest have
two faces. The resolutions of all 76 videos in our database
are1280× 720, and their frame rates are around 30Hz. There

are 40 subjects2 involved in the experiment to watch all 76
videos, including 24 males and 16 females aging from 21 to
35.

During the experiment, a 23-inch 1080p LCD screen, in-
tegrated in the eye tracker, was used to display the videos.
The videos were displayed at their original resolution (720p),
and their display order was random to reduce the eye fatigue
effect on the eye tracking results. All 40 subjects were asked
to watch these video without any task. Besides, the fixations
of those 40 subjects on each video were recorded by a Tobii
X2-60 eye tracker at the sampling rate of60Hz.

Finally, 1, 119, 368 fixations over 30, 936 frames of 76
videos were collected in our database. Our database can
be freely downloadable via https://github.com/RenYun2016/
PF-DGMM, for facilitating the future research.

B. Features extraction

It is intuitive that face related features significantly influence
the distribution of visual attention on face videos. Beforeana-
lyzing the relationship between face and attention distribution,
this section addresses the extraction of face-related features in
videos, including face, facial features and mouth movement.

Face and Facial Features. First of all, it is necessary
to extract face and facial features for attention analysis and
saliency detection. In this paper, we follow the way of [42]
to automatically segment the regions of the face and facial
features, by leveraging the face alignment algorithm [62].
Specifically, 66 landmark points are located according to point
distribution model (PDM) [62]. Then, some landmark points
are connected to precisely obtain the contours of face and
facial features. Upon the contours, the regions of face and
facial features can be extracted. Figure 2-(a) shows an example
for the extraction of the face and facial features, based on the
66-point PDM.

Intensity of Mouth Movement. We empirically find that
the distribution of visual attention on the face in a video is
correlated with the movement intensity of the mouth. There-
fore we need to measure the intensity of mouth movement. In
this paper, we use the following way to quantify the mouth
movement intensity of thet-th frame (denoted byDt) in a
face video. As we show in Figure 2-(b), the mouth region
is composed of 18 landmark points. Generally speaking,Dt

can be determined by the difference of the width or height
across neighboring frames, which may be computed upon the
18 detected points of the mouth region. Since the shape of
mouth movement varies, both width and height are included
in calculatingDt, corresponding to variation in the horizontal
and vertical directions, respectively. However, there maybe
some errors in detecting the 18 points of mouth. To reduce the
impact of these errors onDt, Dt is calculated by averaging
over more than one Euclidean distance, alongside the horizonal
or vertical direction. In our approach, we compute on 9
Euclidean distances, i.e.,d1, d2, d3, d4, d5 and d6 for the
vertical distance, andd7, d8, d9 for the horizontal distance.
Refer to Figure 2-(b) for more details about these 9 Euclidean
distances for computing mouth movement intensity. Finally,

2All 40 subjects have either corrected or uncorrected normaleyesight.
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(a) Face and background (b) Subregions in face

Fig. 3: Proportions of fixations and pixel numbers in different regions,counted on all 76 videos in our database. (a) shows the proportions for the regions
of face and background, and (b) illustrates the proportionsof fixations over different regions of face.

the intensity of mouth movement at thet-th frame can be
calculated as follows,

Dt =

9∑
i=1

|d
(t)
i − d

(t−t′)
i |

min(d
(t)
i , d

(t−t′)
i )

, (1)

whered(t)i and d
(t−t′)
i are thei-th distance of mouth at the

t-th and (t − t′)-th frames, respectively. In (1), the absolute
difference betweend(t)i andd(t−t′)

i is divided by their minimal
value to model the relative intensity of mouth movement. Here,
t′ is the number of frames used to determine mouth variation,
which is related to the frame rate of the video. According to the
theory of persistence of vision [63], there exists approximately
0.1 second residual for motion perception. Since the interval
between thet-th and (t− t′)-th frames needs to be larger than
motion perception in (1),t′ is computed by

t′ = round(0.1 · fr). (2)

where fr is the frame rate of a video. Finally,Dt can be
obtained using (1) and (2). Obviously, a large value ofDt

means the high intensity of the mouth movement, which may
increase visual attention on mouth region.

C. Database analysis

We investigate the intrinsic factors which have an impact
on visual attention to face videos, by analyzing the fixations
obtained from the 76 videos in our database. Intuitively, visual
attention is not uniformly distributed in the face region of
face videos. Upon the extraction of face related features,
we analyzed the attention distribution within face. Then, we
have the following observations. Note that the technique on
extracting face and facial features for our database analysis is
to be discussed in Section III-B.

Observation 1: For a video, face attracts significantly more
visual attention than background, and within face region, facial
features (i.e., eyes, nose and mouth) are more salient than other
regions of the face.

First, we show in Figure 3-(a) the proportions of fixations
and pixels belonging to face and background, respectively,

for all 76 videos. As seen in Figure 3-(a), although the face
region only takes up5.1% pixels in video frames, it attracts
77.7% visual attention. Compared to62.3% fixations attracted
by face3 in images [42], face region is more salient in drawing
visual attention in videos. Besides, Figure 3-(b) illustrates the
proportions of pixels and fixations within face region. We can
see from this figure that facial features consume21.7% pixels
in face region (9.7% for two eyes,6.9% for mouth and5.1%
for nose), whereas they draw45.5% fixations (8.5% for eyes,
18.9% for mouth and18.1% for nose). Thus, we can conclude
that facial features are more salient than other regions in face
for a video. This completes the analysis of Observation 1.

Observation 2: Visual attention on the face, eyes and nose
increases along with the enlarged size of face in a video,
whereas the attention on mouth is invariant to the face size.

Figure 4 shows the proportions of fixations belonging to the
regions of the face and facial features for different face sizes
in the 76 videos of our database. In this paper, we define
face size as the proportion of pixels belonging to the face
region in a video frame. The face region is segmented using
the way of Section III-B. In this paper, we define face size
as the proportion of pixels belonging to the face region in a
video frame. The face region is segmented using the method
described in Section III-B. In Figure 4, the fitting curves are
plotted to reflect the general trend that how proportions of
fixations in facial features change alongside increased face
sizes. From Figure 4, we can find out that when the face size
becomes larger, the proportions of fixations in face, eyes and
nose increase. However, the proportions of fixations in mouth
are almost unchanged, implying that visual attention on mouth
is invariant to the size of face in the video. This completes the
analysis of Observation 2.

Observation 3: Visual attention on eyes is not affected by
the eye blink, whereas more attention is drawn by the mouth
when it is moving.

Before figuring out the relationship between visual attention
and mouth movement or eye blink, we obtained the ground-

3Note that face averagely has5.7% pixels in the whole image.
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(a) Face (b) Eyes (c) Nose (d) Mouth

Fig. 4: Proportions of fixations on face and facial features versus face sizes, for all 76 videos of our database. Each dot in the figure stands for the statistical
result of one video. The least square fitting curves of linearregression on fixation proportions of all frames in 76 videosare provided (blue lines). The
Spearman rank correlation coefficients between face size and fixation proportions in each region are (a) 0.82, (b) 0.88, (c) 0.65 and (d) 0.09.

Fig. 5: Proportions of fixations in eyes and mouth with and without
movement per video frame.

truth eye blink and mouth movement, by manually annotating
all 76 videos of our database4. Then, the statistical results of
fixations versus mouth movement and eye blink are shown
in Figure 5, for all 76 videos of our eye tracking database.
From this figure, we can find that the proportions of fixations
on eyes are almost the same, whether the eyes blink or not.
This implies that visual attention on eyes is invariant to eyes
movement. On the contrary, more fixations are drawn by
mouth (from11.1% to 15.6%) when mouth movement occurs.
This completes the analysis of Observation 3.

Observation 4: Visual attention on mouth increases along
with the enlarged intensity of mouth movement.

Figure 6 plots the fixation proportions of the mouth at
different intensities for mouth movement, with the scatter
analysis of all fixations on mouth regions from our database.
Here, the intensity of mouth movement is measured using the
method described in Section III-B. We can see from Figure 6
that attention on mouth generally increases with the increased
intensity of mouth movement, the Spearman rank correlation
coefficient of which (=0.24) is much larger than that between
face size and fixation proportion in mouth regions (=0.09).
This completes the analysis of Observation 4.

4Three volunteers annotated the movements of the eyes and mouth in all
frames of the 76 videos. Then, the ground-truth annotationsof the eye and
mouth movements were obtained by majority voting. These annotations are
also provided along with our eye tracking database.

IV. T HE PROPOSED APPROACH

A. Framework

In this section, we mainly discuss the proposed approach for
detecting saliency of face videos. In our approach, we follow
the basic way of [39] and [42] to predict the saliency map of
each video frame by

M = wCS
C
t + wIS

I
t + wOS

O
t + wFS

F
t . (3)

In (3), S
C
t , S

I
t , S

O
t and S

F
t are the saliency maps of the

feature channels of color, intensity, orientation and faceat
the t-th video frame.wC , wI , wO and wF are the weights
corresponding to each feature channel. In this paper, they are
learnt by the least square fitting on the training data.

Our approach adopts Itti’s model [16] to yield saliency maps
S
C
t , S

I
t and S

O
t for the channels of low-level features. In

addition to the low-level features, the face is incorporated in
our approach. This satisfies Observation 1 that face receives
most visual attention in a video. In the following, we aim at
computing the saliency distributionSF

t of the face channel, for
saliency detection of face videos. Observations 2 and 4 have
verified that the variation of face size and the action of mouth
movement in a video dynamically change the distribution
of visual attention on face. Thus, our approach models the
dynamic visual attention on face regions by proposing a new
distribution model called DGMM. It is worth pointing out that
it is different from the previous works of [39] and [42], which
only use static GM or GMM to model visual attention on the
face.

The overall framework of our saliency detection approach
is shown in Figure 7. Next, we introduce DGMM to model the
dynamic distribution of visual attention on the face for videos.

B. DGMM for single-frame saliency detection

When processing thet-th frame of a face video, we can
model its saliency distribution̂SF

t as follows,

Ŝ
F
t =

5∑
i=1

π̂i
tG

i =

5∑
i=1

π̂i
tN (µ̂i

t, σ̂
i
t), (4)

whereN (·) is the Gaussian distribution, and̂πi
t, µ̂

i
t and σ̂i

t

are the weight, mean and standard deviation of thei-th GM
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Fig. 6: Proportions of fixations in mouth at different intensities for mouth movement. The Spearman rank correlation coefficient here is 0.24.

Gi. Similar to [42],G1, G2, G3, G4 andG5 correspond to the
GMs of face, left eye, right eye, nose and mouth. We use the
same method as [42] to learn means and standard deviations
of these GMs.

In the following, we propose to learn weights{π̂i
t}

5
i=1 of

each GM from training data, in accord with our observations
of Section III-C. Assume that we haveL training video frames,
and their corresponding fixation maps are{S∗

l }
L
l=1. Note that

the fixation maps are obtained by applying a 2D Gaussian
filter to smooth the ground-truth fixations in each training
frame. Then, GM weights{π̂i∗

l }5i=1 of each training frame
can be obtained by solving the followingℓ2-norm optimization
formula:

min
{π̂i∗

l
}5
i=1

||
5∑

i=1

π̂i∗
l Gi∗

l − S∗
l ||2 s.t.

5∑
i=1

π̂i∗
l = 1, π̂i∗

l > 0,

(5)
where {Gi∗

l }5i=1 are the GMs of thel-th training frame. In
our approach, we utilize the CVX5 [64] to solve the above
formula.

Given{π̂i∗
l }5i=1 of all training frames, we can learn{π̂i

t}
5
i=1

as follows. Observation 2 showed that visual attention to the
face, eyes and nose depends on face size. Therefore, we
learn the relationship between face size and{π̂i

t}
4
i=1, using

polynomial regression over the training data{π̂i∗
l }4i=1 ands∗l ,

where {s∗l }
L
l=1 are the face sizes of training frames. Then,

{π̂i
t}

4
i=1 can be represented by

π̂i
t =

K1∑
k=0

aik · (st)
k, i = 1, 2, 3, 4 (6)

wherest is the size of face at thet-th test video frame. In (6),
{aik}

K1

k=0 are the polynomial parameters to be learnt, withK1

being the order of the polynomial function. In Section V-A,
we provide more details about the values ofK1 and{aik}

K1

k=0,
which are obtained by training in our experiments.

Now, we move to the computation ofπ̂5
t , which is the weight

of the GM belonging to the mouth. Since Observation 4 indi-
cated that the saliency of mouth in a video is correlated with
the intensity of mouth movement, we also use the polynomial
regression to learn̂π5

t . Recall thatDt is the intensity of mouth

5CVX is a Matlab-based toolbox for solving the problem of convex
optimization.

movement at thet-th frame, as denoted in Section III-B. Then,
we have

π̂5
t =

K2∑
k=0

bk · (Dt)
k. (7)

In (7), {bk}
K2

k=0 andK2 are the polynomial parameters and the
order of the regression, to be discussed in Section V-A with
more details.

Finally, face saliencŷSF
t of each single frame can be gener-

ated, based on (4). However, it is clear that a sudden change in
the saliency distribution of the face across neighboring frames
is rare. In other words, the saliency map of a video frame
not only depends on its observed features, but also on the
saliency distribution of face at the previous frames. Due tothis,
we propose the PF-DGMM algorithm in the next subsection,
which applies PF to smooth DGMM saliency distribution
across frames. As such, both the past saliency and the observed
features can be considered in a uniform framework to output
the final saliency map of the dynamic face channelS

F
t at frame

t.

C. PF-DGMM for video saliency detection

To satisfy temporal consistency in a video, we need to
enable the smooth transition of dynamic face saliency across
frames. In other words, the DGMM saliency distribution of
each frame should depend on the observed features at the cur-
rent frame as well as the estimated DGMM of previous frames.
The PF estimates the internal states in dynamic systems given
sequential observations, which has been widely used to make
inferences on sequential data. Thus, the PF is integrated with
the DGMM distribution, so called the PF-DGMM algorithm,
for modeling the dynamic face saliency of videos.

Mathematically,SF
t , which is the final saliency distribution

of face at thet-th frame, should be predicted on the basis
of SF

t−1 and Ŝ
F
t . Note that bothSF

t and Ŝ
F
t are modeled by

GMM distributions in each video frame. In our PF-DGMM
algorithm, we need to track the dynamic changes in videos, to
adjust the values of{π̂i

t}
5
i=1, {µ̂i

t}
5
i=1 and{σ̂i

t}
5
i=1 of GMM

by (4). After the adjustment,{πi
t}

5
i=1, {µi

t}
5
i=1 and {σi

t}
5
i=1

can be yielded as the parameters ofS
F
t , for the final output

of face saliency in a video. Obviously, the centroidµi
t of each

GM is in the center of face or facial features, and we therefore
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Fig. 7: Framework for our approach.

Algorithm 1 Summary of our PF-DGMM algorithm

Input: Means of DGMM{µi
1:t}

5
i=1 and DGMM parameters of̂SF

1:t: {π̂i
1:t}

5
i=1

and{σ̂i
1:t}

5
i=1, which are obtained in Section V-B.

Output: Saliency map of the dynamic face channelS
F
t .

Initialize: The total number of frames:T ; the total number of particles:J ; the initial
sets of training parameters:{π̂i∗

l }5
i=1; {σ̂i∗

l }5
i=1 (l = 1, . . . , L); and the weights

of particles:ω(j)

πi
0

= 1
J

andω(j)

σi
0

= 1
J

.

for t = 1, t ≤ T , t + + do
for i = 1, i ≤ 5, i+ + do

Sample particles of parametersπi
t andσi

t from training set:q(j)
πi
t

∈ {π̂i∗
l }L

l=1

andq(j)
σi
t

∈ {σ̂i∗
l }L

l=1.

Estimate the likelihoodp(π̂i
t|q

(j)

πi
t

) andp(σ̂i
t|q

(j)

σi
t

) with (14), givenπ̂i
t and

σ̂i
t .

Update weightsω(j)

πi
t

andω(j)

σi
t

using (13) with previous weightsω(j)

πi
t−1

and

ω
(j)

σi
t−1

.

CalculateE(πi
t) andE(σi

t) using (15).
Normalize weightsω(j)

πi
t

andω(j)

σi
t

via (16).

Setπi
t = E(πi

t) andσi
t = E(σi

t).
end for
Calculate saliency distribution over faceSF

t by
∑5

i=1 πi
tN (µi

t, σ
i
t), where

N (·) is the Gaussian distribution.
ReturnSF

t .
end for

use detected face and facial features to obtain{µi
t}

5
i=1. For

{πi
t}

5
i=1 and{σi

t}
5
i=1, we can track the dynamic change based

on the PF as follows.
Following Bayesian tracking theory [47], we take{πi

t}
5
i=1

and {σi
t}

5
i=1 as random variables. These variables can be

predicted by

p({πi
t}

5
i=1, {σ

i
t}

5
i=1|{π̂

i
1:t}

5
i=1, {σ̂

i
1:t}

5
i=1), (8)

in which the distribution ofSF
t−1 is embedded in{π̂i

1:t−1}
5
i=1

and {σ̂i
1:t−1}

5
i=1. Besides,{π̂i

t}
5
i=1 and {σ̂i

t}
5
i=1 encode ob-

servedŜF
t of the current frame. Consequently, the values of

{πi
t}

5
i=1 and {σi

t}
5
i=1 depend onSF

t−1 and Ŝ
F
t . It is obvious

that{πi
t}

5
i=1 and{σi

t}
5
i=1 in DGMM are independent of each

other. Thereby, (8) can be decomposed as

p({πi
t}

5
i=1|{π̂

i
1:t}

5
i=1), (9)

and

p({σi
t}

5
i=1|{σ̂

i
1:t}

5
i=1). (10)

Assuming that the elements of{πi
t}

5
i=1 are not correlated

with each other in (9), we can utilize the following expectation
of πi

t:

E(πi
t) =

∫
p(πi

t|π̂
i
1:t)π

i
tdπ

i
t, (11)

to estimate πi
t. However, the probability distribution of

p(πi
t|π̂

i
1:t) in the above equation is not available. Therefore,

our PF-DGMM algorithm uses the Monte Carlo method to
obtainp(πi

t|π̂
i
1:t) by introducing particles. Note that particles

q
(j)
t (j = 1, 2, ..., J) are regarded as possible values ofπi

t at
the t-th frame, which are initialized to bêπi∗

l of the training
data. As a result,p(πi

t|π̂
i
1:t) can be calculated by

p(πi
t|π̂

i
1:t) =

J∑
j=1

ω
(j)
t δ(πi

t − q
(j)
t ), (12)

whereδ(·) is the Dirac delta function, andω(j)
t is the weight

of thej-th particleq(j)t . According to PF theory [65],ω(j)
t can

be updated fromω(j)
t−1 in the form of

ω
(j)
t = ω

(j)
t−1p(π̂

i
t|q

(j)
t ). (13)

In (13), p(π̂i
t|q

(j)
t ) is the likelihood ofq(j)t given π̂i

t. Conse-
quently, (13) reflects the previous saliency distributionS

F
t−1

at the previous frame (encoded inω(j)
t−1), and the observed

saliency distributionŜF
t at the current frame (encoded in

p(π̂i
t|q

(j)
t )). Generally speaking, the probability ofp(π̂i

t|q
(j)
t )

increases whenq(j)t approaching tôπi
t. Therefore,p(π̂i

t|q
(j)
t )

is modeled in our PF-DGMM algorithm by

p(π̂i
t|q

(j)
t ) = exp (|π̂i

t − q
(j)
t | − c), (14)

In the above equation,c is a constant set to 1, to fix the range
of probabilityp(π̂i

t|q
(j)
t ) to [0, 1]. Specifically, the weights of

Gaussian componentŝπi
t and particlesq(j)t are both in the

range of [0, 1]. Thus, we have0 ≤ |π̂i
t − q

(j)
t | ≤ 1. When

c = 1, the range ofexp(|π̂i
t − q

(j)
t | − c) is [e−1, 1], which

is ⊂ [0, 1]. Consequently, probabilityp(π̂i
t|q

(j)
t ) is restricted

to [0, 1] in the above equation via settingc = 1. Given (11)
and (12),πi

t can be obtained by setting it equivalent to its
expectation:

E(πi
t) =

J∑
j=1

ω
(j)
t q

(j)
t , (15)

with ω
(j)
t obtained from (13) and (14).

At last, we need to normalizeω(j)
t for the next frame by

the following equation:

ω
(j)
t =

ω
(j)
t∑J

j=1 ω
(j)
t

. (16)
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TABLE I: The learnt polynomial coefficientsai
k

features face left eye right eye nose
ai
k

i = 1 i = 2 i = 3 i = 4

k = 0 0.52 -0.07 -0.07 0.11
k = 1 -7.13 5.49 5.49 7.39
k = 2 23.09 -17.99 -17.99 -28.01
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Polynomial order K₂

Fig. 8: Fitting error along with different values of polynomial order K2.

Furthermore, we use the similar way to compute{σi
t}

5
i=1.

Finally, SF
t can be achieved as saliency distribution of the

face channel at each frame. Our PF-DGMM algorithm is
summarized in Algorithm 1.

V. EXPERIMENTAL RESULTS

In this section, we evaluate the effectiveness of our PF-
DGMM approach in detecting saliency of face videos, via
comparing with other 10 state-of-the-art approaches. Next, we
present the parameter settings used in our experiment.

A. Settings

In our experiment, all 76 videos in our database, which are
discussed in Section III-A, are divided into two groups: the
training and test sets. Specifically, the training set is composed
of 30 videos randomly selected from our database. It includes
14,592 frames with 523,929 fixations. The other 46 videos
form the test set, the results of which are to be reported
in Section V-B. Here, all fixations falling into face regions6

(in total 407, 093 fixations) are selected from 14,592 training
frames. Given those training fixations, we apply the following
way to learn the weights of GMs.

Learn face-related GM weights.As mentioned in Section
IV-B, the weights{π̂i

t}
4
i=1 of each GM, i.e., face, left eye,

right eye and nose, should be related to the face sizest. To
this end, we first convolute all fixations in each training frame,
to obtain the ground-truth saliency maps{S∗

l }
L
l=1. Afterwards,

the optimal weight of each GM can be estimated for each
training frame, i.e.,{π̂i∗

l }5i=1, via making DGMM distribution
as close to{S∗

l }
L
l=1 as possible. Given{π̂i∗

l }5i=1 of all 14,592
training frames, the polynomial coefficients{aik}

K1

k=0 can be

6All faces across different videos are re-scaled into a uniform coordinate
before learning the distribution.

learnt for encoding the relationship between{π̂i
t}

4
i=1 and st

with (6). Besides, the order ofK1 in (6) is empirically set to
be 2. The learnt coefficients are reported in Table I.

Learn mouth-related GM weights. As shown in (7), the
weight of the GM belonging to the mouth, i.e.,π̂5

t , is correlated
with the mouth movement intensityDt. Similar to learning
{π̂i

t}
4
i=1, we train polynomial coefficients{bk}

K2

k=0 for π̂5
t .

To determine the orderK2 of the regression in (7), Figure
8 plots the fitting error over all training samples, at different
K2. As shown in this figure, the fitting error is converged
whenK2 ≥ 1. This indicates that the weight of moutĥπ5

t is
linearly correlated withDt. Therefore, we setK2 = 1 in our
experiments. Then,̂π5

t = b0+ b1 ·Dt achieves the least square
error over all training samples, whenb0 = 0.18 andb1 = 0.02.
Consequently, after the least square fitting, the values ofb0 and
b1 are 0.18 and 0.02 in our experiments, respectively.

Particles for PF-DGMM. Given above learnt{aik}
4
i=1 and

bk, {π̂i
t}

5
i can be estimated using (6) and (7) with respect to

st andDt, for each training frame. Then, the estimated{π̂i
t}

5
i

of all training frames are used as the particles of the GM
weights. Similarly, we use the estimated standard deviations
of all training frames as the particles of standard deviations
of GMs. Note that the total number of particles is14, 592,
equaling to the number of all training frames.

B. Evaluation on our database

Evaluation metrics. In our experiment, we utilize the
following metrics to evaluate the accuracy of saliency detec-
tion: normalized scanpath saliency (NSS), linear correlation
(CC) and area under ROC curve (AUC). NSS quantifies the
degree of correspondence between human fixation locations
and saliency maps. CC measures the strength of the linear cor-
relation between human fixation maps and predicted saliency
maps. AUC computes the area under ROC curve, reflecting the
tradeoff between the false positive rate and true positive rate.
The larger NSS and CC indicate higher accuracy of saliency
detection. Besides, the closer the AUC value is to 1, the more
accurately the approach can predict human attention.

Evaluation results. Here, we evaluate on all 46 test videos
of our database, with other 30 videos being training data.
For the evaluation, we compare our approach with 10 other
approaches (i.e., Cerfet al. [39], Zhou et al. [60], Guoet
al. [21], Zhao et al. [40], Rudoy et al. [34], Xu et al.
[42], Hosseinet al. [28], WangSeg [14], WangSal [11] and
SALICON [32]) to verify the effectiveness of our approach.
The comparison results are presented in Table II, in terms of
NSS, CC and AUC values with means and standard deviations.
As we can see from this table, our approach outperforms other
10 approaches in terms of all three metrics, with5.20 in NSS,
0.84 in CC and0.94 in AUC. Specifically, our approach has
an improvement of at least0.41 in NSS and0.07 in CC
compared to other approaches. It is worth pointing out that
NSS and CC, especially NSS, are more reasonable metrics
than AUC in evaluating saliency accuracy, according to the
analysis of [66]. Thus, the results of Table II imply that
our approach significantly advances state-of-the-art saliency
detection in face videos. Besides, the gain of our approach
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Fig. 9: Saliency maps across different frames (the 84th, 109th, 198th, and 203rd frames) of a randomly selected video, generated by our and other 10
approaches, as well as the human fixations.

Fig. 10: Saliency maps of some videos at different face sizes, generated by our and other 10 approaches, as well as the human fixations.

over [42] verifies the effectiveness of making GMM dynamic
in videos, since face saliency is modeled by GMM in [42]
while it is represented by DGMM in our approach.

Subjective results.Figures 9 and 10 illustrate the saliency
maps of some selected video frames, generated by our method
and other 10 approaches. As we can see from these two
figures, the saliency maps of ours are much closer to the
ground-truth of human attention maps, than those of other
10 approaches. Such results mean that our approach can
well locate the salient regions. Figure 9 shows the saliency
maps across different frames in a same video, and we can
see that our approach precisely identifies the saliency change
due to mouth movement, while other approaches, especially
[42], have almost no reaction to this type of movement. This
confirms the effectiveness of our PF-DGMM model, which
enables the dynamic transition of GMM between frames for
modeling saliency of videos. Figure 10 further shows the
saliency maps of different videos with faces of various sizes.
Our approach is capable of predicting human attention well,
regardless of face size. This further verifies the effectiveness
of our approach in saliency detection of face videos.

Time complexity evaluation.The above performance eval-
uation has demonstrated that our approach performs better than
other approaches in saliency detection accuracy of face videos.
It is interesting to further compare the time complexity of our
and other approaches. In our experiments, the computational
time of saliency detection is recorded by running our and other
approaches for 720p videos in Matlab 2014a and a computer
with an I7-4771 @3.50GHz and 16G memory. Then, the
computational time per frame is obtained and shown in Figure
11, for our and other approaches. We can see that our approach
consumes more time than the early works of Cerfet al.

Fig. 11:Running time per frame of 720p, for our approach and other state-
of-the-art approaches.

[39] and PQFT [21]. However, our approach performs much
better than these approaches in saliency detection accuracy, as
can be seen in Table II. More importantly, the computational
time of our approach is comparable to or less than those
of other state-of-the-art approaches, despite performingbetter
than these approaches. This indicates efficacy and efficiency
of our approach in saliency detection of face videos.

C. Evaluation on other databases

To test the generalizability of our approach, this section
evaluate face videos from other databases. We selected totally
28 videos including one obvious face from the existing eye
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TABLE II: The comparison of our, PF-DGMM channel, and other approaches in mean (standard deviation) of AUC, NSS, and CC, for all 46 test videos
of our database.

Metrics Our Cerf [39] Zhou [60] PQFT [21] Zhao [40] Rudoy [34] Xu [42] OBDL [28] WangSeg [14] WangSal [11] SALICON [32]
NSS 5.20(1.36) 2.41(0.59) 2.07(0.75) 1.16(0.80) 3.91(1.01) 2.15(0.82) 4.79(1.06) 1.58(1.21) 2.00(0.85) 1.73(1.00) 4.51(1.21)
CC 0.84(0.10) 0.58(0.10) 0.50(0.15) 0.25(0.15) 0.77(0.11) 0.57(0.13) 0.77(0.12) 0.31(0.14) 0.48(0.19) 0.42(0.22) 0.57(0.20)

AUC 0.94(0.03) 0.92(0.04) 0.88(0.06) 0.81(0.07) 0.94(0.03) 0.88(0.06) 0.93(0.06) 0.82(0.07) 0.58(0.21) 0.57(0.20) 0.76(0.12)

TABLE III: The comparison of our and other approaches in AUC, NSS, and CC, averaged over face videos of other database.

Metrics Our approach Cerf [39] Zhou [60] PQFT [21] Zhao [40] Rudoy [34] Xu [42] OBDL [28] WangSeg [14] WangSal [11] SALICON [32]
NSS 3.53 1.91 1.30 1.00 2.63 2.36 3.19 1.31 1.45 1.63 2.73
CC 0.64 0.46 0.32 0.21 0.58 0.59 0.62 0.34 0.37 0.43 0.48

AUC 0.91 0.87 0.78 0.80 0.89 0.89 0.87 0.82 0.85 0.86 0.88

Fig. 12: Saliency maps of face videos selected from other databases,SFU [67], DIEM [68] and Hollywood [58].

tracking database of videos, SFU [67], DIEM [68] and Hol-
lywood [58]. They are all tested in our experiment. Note that
we use the same training set as Section VI-B, which includes
30 face videos.

Figure 12 shows the saliency maps of our and other 10
approaches, for the selected frames of four test videos. It
is obvious that saliency maps of our approach are closer
to ground-truth human fixation maps than other approaches.
Table III further tabulates the NSS, CC and AUC results of
our and other approaches, averaged over all 28 test videos
of other databases. As aforementioned, it has been proved by
[66] that AUC is not a robust metric for evaluating saliency,
whereas NSS is the most robust one. From Table III we can
find that our approach again performs better than all other
approaches. Specifically, there is 0.34 NSS enhancement of
our approach over the second ranking approach [42], similar
to the 0.41 improvement in NSS on our database. Hence, the
generalizability of our approach confirmed.

D. Performance analysis of our approach

As discussed in Section IV, PF-DGMM is a new feature
channel proposed in our approach for modeling dynamic atten-
tion on face. Hence, it is interesting to analyze the performance
of the single PF-DGMM channel for saliency detection in face
videos. To this end, we evaluate the component quantitative
results for our approach. Specifically, we evaluate NSS, CC
and AUC of only applying the PF-DGMM channel in detecting
saliency, averaged over all test videos in our database. For
comparison, we also evaluate the performance of our approach
without the PF-DGMM channel. The results are reported in
Figure 13. We can see from this figure that the proposed

PF-DGMM channel achieves 4.43 in NSS, 0.84 in CC and
0.92 in AUC, far better than those of our approach without
the PF-DGMM channel. This indicates the effectiveness of
the proposed PF-DGMM algorithm in dynamically modeling
attention on face.

Figure 13 further shows the performance of each individual
channel of color, intensity and orientation, which are also
incorporated in our approach. We can see from this figure
that the proposed PF-DGMM channel achieves considerably
better performance than each individual channel, i.e., color,
intensity and orientation. Additionally, Figure 13 shows the
performance of our approach, which integrates the proposed
PF-DGMM channel with other channels of color, intensity and
orientation. We can see from this figure that when integrated
with the channels of color, intensity and orientation, the
performance of PF-DGMM can be improved from 4.43 to 5.20
for NSS, 0.78 to 0.84 for CC, and 0.92 to 0.95 for AUC. Thus,
the effectiveness of feature integration can be validated.

Now, we analyze the failure cases of our approach in de-
tecting saliency of face videos. Figure 14 shows four examples
of failure cases, belonging to two videos. As seen in the
second and third rows, the faces are missed by the face
alignment method utilized in our approach. In this case, our
approach can only apply the traditional feature channels of
color, intensity and orientation, in saliency detection. However,
face still attracts most visual attention, such that the saliency
maps of our approach are far from the ground-truth attention
maps. Therefore, more robust face alignment is required for
succeeding in saliency detection of face videos. We can further
see from the first row of Figure 14 that the lady wearing
sunglass attracts little attention in the eye regions, due to the
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Fig. 13: AUC, CC, and NSS results for single channels (PF-DGMM, color, intensity and orientation) and the combination of three bottom-up channels

(color, intensity and orientation).

occlusion of eye regions. Although face alignment applied in
our approach is able to detect the face region, our saliency
detection approach still fails in this case. It is because the
eye regions are with some kind of saliency in our approach,
not in accordance with ground-truth attention map. The last
row of Figure 14 shows that the occlusion of mouth by the
hand makes fixation distribution not follow Gaussian model.
In this case, our DGMM distribution of saliency does meet the
distribution of ground-truth attention on the occluded mouth
region. For this case, it is necessary to study the influence of
face occlusion on the distribution of visual attention.

VI. CONCLUSIONS

In this paper, we have proposed a promising data-driven
saliency detection approach for face videos, which can gen-
erate accurate face saliency by taking into account the face
size and mouth movement. Specifically, we set up a new eye
tracking database, which is composed of 76 videos viewed
by 40 subjects. Then, four observations were made from our
database, implying that the DGMM is suitable for modelling
the distribution of visual attention on face videos. Inspired by
these observations, DGMM was developed to predict saliency
of face videos by learning from eye tracking data. In addition,
the PF algorithm was employed in our approach to sequentially
update the parameters of DGMM along with processed video
frames. Thus, our approach is called PF-DGMM, which can
seen as a data-driven approach. At last, the experimental
results demonstrated that our approach can more accurately
detect the visual saliency of face videos, compared with other
state-of-the-art approaches.

Our work, at the current stage, mainly focuses on detecting
saliency of the face without any occlusion. When the face is
occluded in videos, our approach fails in modelling attention as
the occlusion alters the distribution of human attention. Thus,
it is rather an interesting future work to study the influenceof
face occlusion on visual attention. The proposed approach may
facilitate the future research in the area of the video analysis on

emotional behavior, by considering the more attractive regions
in face. Upon the study of this paper, it is expected that the
coding efficiency of face videos can be further improved by
removing the perceptual redundancy existing in the non-salient
regions. In this way, we can use fewer bits to encode and
transmit face videos, to relieve the bandwidth-hungry dilemma
caused by the prevalence of video conferencing applications,
e.g., FaceTime, Skype, and even Wechat.
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