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Abstract—Recently, video conferencing has been popular in  Most recently, data-driven approaches [30]-[42] whichiiea
multimedia systems, such as FaceTime and Skype. In video con to bridge the gap between image/video features and sajiency
ferencing, almost every frame contains a human face. Therefe, have become prevalent in both video and image saliency
it is important to predict human visual attention on face videos . .
by saliency detection, as saliency may be used as a guide tod?teCt'on' These data-dr_lven approach_es have_found tmﬂ SO
the region-of-interest (ROI) for the content-based appliations of high-level features are indeed attractive to visual aitbent
face videos. In this paper, we propose a data-driven appro&c In particular, face is an obvious high-level feature to aatr
for saliency detection in face videos. From the data-driven yisual attention, and thus many top-down approaches have
perspective, we first establish an eye tracking database tha jncomorated face as a channel for saliency detection & fac

contains fixations of 76 face videos viewed by 40 subjects. bip . o . .
the analysis of our database, we find that visual attention is images [39]-[42]. Specifically, Cerét al. [39] investigated

significantly attracted by faces in videos. More importanty, the from eye tracking data that face is strongly correlated with
attention distribution within face regions varies with regard to  visual attention, and they thus proposed to combine face
mouth movement. Since previous works have investigated thé channel with Itti's model [16] for detecting saliency of iges
is efficient to model face saliency in still images using a Gasian including a face. Later, Zhaset al. [40] found that the face

mixture model (GMM), the variation of visual attention in vi deos . . .
can be modeled by dynamic GMM (DGMM). Accordingly, we and orientation channels are usually more important thé&or co

propose to adopt the particle filter (PF) in modeling DGMM for ~ and intensity channels. Therefore, they learnt the optimal
saliency detection of face videos, so called PF-DGMM. Finlgl weights of different channels using least square fitting of
the experimental results show that our PF-DGMM approach eye tracking data, further improving the saliency detectio
significantly outperforms other state-of-the-art approadies in performance of [39]. Most recently, Xet al. [42] proposed
saliency detection of face videos. . SN . .
to model the saliency distribution of the face region using a
Index Terms—Face video, visual attention, Gaussian mixture Gaussian mixture model (GMM) [43], which is learnt from the
model. training data using the conventional expectation maxitiora
(EM) algorithm. The above approaches consider images with
faces, significantly advancing the development of the toywsd
saliency detection of images.
URING the past two decades, saliency detection hasFace videos [44] are currently undergoing explosion of
become increasingly popular due to its wide applicatiogrowth, due to the emerging video conferencing application
in multimedia processing tasks, such as object segmentatiich as FaceTime and Skype. Actually, face also plays an
[1]-[5], video quality assessment [6], perceptual videding important role in predicting saliency of video conferemgin
[7] and thumbnail generation [8]. Recently, object detacti similar to its important role in saliency detection of face
has also taken advantage of visual saliency in segmentifitfges. Moreover, as we analyze in this paper (Section)ilI-C
salient objects, called salient object detection [9]-[M$ual face attracts more visual attention in videos (77.7% fixefjo
saliency [15] indicates how much each pixel or region atsradhan that in image (62.3% fixations). Thus, face is a signitica
human attention. The first study on visual saliency was pede for saliency detection in videos. However, most of the
formed on images in 1998, when ltti and Koch [16] found thaxisting video saliency detection approaches [17], [18]]+
intensity, color and orientation information in an image ¢ee [23], [27]-[29] make use of the bottom-up information, such
employed to predict image’s saliency map. Afterwards, thég motion vector, flicker, as well as spatial and temporal
extended their work to video saliency detection [17]. Rélgen correlation, to detect video saliency. Most recently, [#3k
a great number of approaches, such as [18]-[29], have b&&en proposed to detect saliency in multiple-face videos by
proposed to model saliency in videos. Those saliency-tletec finding which face attracts the most visual attention, beteh
approaches are generally driven by biologically-inspifeat is no work on modelling distribution of attention within a
tures, which rely heavily on the unmatured study of the humaingle face. On the other hand, although videos are composed
visual system (HVS). of images, they are fundamentally viewed differently, hesea
the dynamic changes of pictures in videos can be seen as
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Fig. 1: The comparison of video saliency maps generated by our apprand [42]. Note that [42] is a saliency detection apprdactimages, while ours
work on videos. Here, the saliency maps of [42] are genefayectgarding each video frame as a still image. The visuahttin distribution by 40 subjects
is also shown in this figure. When the mouth moves, visuahtitte is transferred from eye regions to mouth region.

the GMM distribution of visual attention in face images [42hlgorithm. The main contributions of this paper are listed a
varies across video frames. It is because visual attention follows.

the mouth increases when the mouth is moving. « We establish an eye tracking datablag® face videos,

In this paper, we establish an eye tracking database for face which contains the fixations of 40 subjects viewing 76
videos and find that visual attention is attracted by faces in single-face videos.
videos. We further find from our database that attention on. We analyze the factors that influence the attention dis-
face prefers to distributing in the regions of facial featyr.e., tribution on face videos, via mining our established eye
nose, eyes and mouth. By considering the attention digimibbu tracking database.
of nose, eyes and mouth as different Gaussian models, GMM We propose a PF-DGMM approach for learning DGMM
is applied to model intra face saliency in each video frame. distribution as detected saliency of face videos, in light
Beyond, we find that attention distribution on face and flacia  of our analysis on eye tracking database.

features vary with respect to face size and mouth movemephere are some potential applications for our saliencycdete
Upon these findings, we propose a particle filter based DGMn approach. For example, in compressing video conferenc
(called PF-DGMM) approach to detect intra saliency of fagag, the bits can be assigned according to the face saliency
videos, modeled by DGMM distribution. In contrast to Xu'sjetected by our approach, which satisfies the dynamic olistri
static learnt GMM [42] for image saliency detection, thgion of human attention within the face region. Conseqyentl
parameters of GMM are dynamically modified according the perceptual quality can be improved in video conferemcin
the mouth movement to obtain the DGMM distribution irhpplications. Furthermore, in other applications, eJgcoeling

our approach. Such dynamic parameters can be learnt frgmrendering video conferencing, the limited computationa
training fixations in our data-driven approach. It is worthesources can be also allocated according to the face salien

pointing out that particle filter (PF) [46] is a sequentiajietected by our PF-DGMM approach.
model estimation technique that is suitable for monitoring

dynamic processes [47]. Thus, for each processed videafram I
our PF-DGMM approach updates the parameters of GMM, o ) ) )
i.e., mean, standard deviation and weights of each Gaussiad N€ €xisting approaches on saliency detection can be classi
component, by adopting the PF algorithm. To be more Speciff[gd into two_ categorle_s: elther heurlstlg: or datg—dnverdeie.

we take the parameters of Gaussian components as particfedne following, we briefly review the video saliency deteat
and constantly update the weights of the particles to monit§erature on these two categories, respectively.

dynamic changes of attention in face videos, accordingde fa

size and mouth movement. A. Heuristic approaches

The PF-DGMM approach is proposed in this paper for yeyristic approaches aim at developing the computational
saliency detection in face videos, which is based on th€ydels on image features for saliency detection, according
learned GMM distribution of our previous approach [42] fofy the understanding of the HVS. During the past decade,
face images. However, our PF-DGMM approach models the |arge number of heuristic saliency detection approaches
saliency distribution of face in videos using dynamic GMI\117]_[21], [24]-[28] have been proposed for video saliency
(DGMM), in which the GMM parameters vary across vide@etection. At the beginning, Ittet al. [17] found that the
frames. In contrast, our previous approach [42] only fos@8®e  gynamic features of motion and flicker contrast are coreelat
static GMM distribution of face saliency for images. Towardyith visual attention. Therefore, [17] combined these two

DGMM, the dynamic changes of GMM parameters are leam@gnamic features with Itti's image saliency model [16] for
in the PF-DGMM approach by designing a PF, whereas the

static GMM parameters are estimated in [42] by the EM The database is available onlitgtps : //github.com/RenY un2016.
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detecting saliency in videos. Later, a novel feature callddstead of the aforementioned hand-tuned features, thetlat
surprisewas defined in [18] to measure how visual changegork of [53] automatically learns hierarchical features fo
attract human attention, based on the Kullback-Leibler)(Klimage saliency detection. Most recently, deep neural msvo
divergence between spatio-temporal posterior and priggfee (DNNs) have been widely used in the saliency detection of
Given the feature ofsurprise [18] developed a Bayesiangeneric images. Deep gaze | [48] was proposed to apply DNNs
framework for video saliency detection. Besides, someroth® automatically learn effective features for saliencyedéon.
Bayesian framework related approaches, e.g., [19] and [2Bluang et al. [32] have developed the saliency in context
were proposed for video saliency detection. Recently, sof®@ALICON) method to learn high-level semantic features of
advanced video saliency detection approaches [24], [2B8 habjects in saliency detection, on the basis of DNNs. A shallo
been proposed, also from the biologically-inspired asgemt structured DNN [33] was explored to further advance image
example, Linet al.[25] utilized earth mover’s distance (EMD) saliency detection. Meanwhile, Saumgal. [49] proposed a
to measure the center-surround difference in spatio-teahpanew saliency map model formulated by generalized Bernoulli
receptive filed, yielding dynamic saliency maps for videoslistribution, which is learnt by a DNN architecture. DNNs
Hou et al. [26] proposed to explore the information divergencbave also advanced the state-of-the-art salient objeettiab
model for image saliency detection, and then informatigb0]. Some new DNN architectures [51], [52] were developed
divergence is exploited to improve Bayesian surprise féo simultaneously deal with saliency detection and salient
saliency detection in videos. Besides, [27] and [28] aredyz object detection.
that some compressed domain features (e.g., motion vectorThere also exist several works on static saliency detection
are highly correlated with heuristic saliency detectioatfiees some specific images. Focusing on gray images with natural-
(e.g., object motion), and they applied these featuresdeovi scene, a gaze-attentive fixation finding engine (GAFFE) [37]
saliency detection. Recently, saliency detection has lwen was proposed to learn the bandpass filters of both luminance
corporated for detecting object-level saliency [9]-[li4]the and contrast from eye tracking data, which are used as the low
field of salient object detection. In particular, [11] prged level features for saliency detection. Afterwards, dictioy
a spatiotemporal saliency energy function as a heuristi; clearning was applied in [38], together with sparse codiong, t
which encourages the spatiotemporal consistency of vidiearn the patterns of salient and non-salient regions fay gr
saliency maps, significantly improving the performance dafages with nature scene. Beyond, more approaches [39]-[42
salient object detection. In addition, low rank decomposit work on predicting saliency of images with face, since face
was applied in [12], [13] to detect salient objects. is an obvious cue for drawing visual attention. For example,
However, the understanding of the HVS is still in its infancyCerf et al. [39] found out that face is an important top-down
and heuristic saliency detection thus has a long way to fgature to receive attention, as the faces were fixed 68.51%
yet. Recently, machine learning techniques have emergedvathin two fixations (7 subjects viewing 150 images with face
a possible way to generalize visual attention model from ey their eye tracking experiment. Therefore, they propased
tracking data. They can be seen as data-driven approacleesnbine Viola-Jones (VJ) face detector [54] with ltti's nebd
These data-driven video saliency detection approaches Hi@] for saliency detection over images with face. Afterdsr
reviewed in the following. [40] was proposed to learn the weights of top-down features
(i.e., face) using least square fitting of eye tracking data,
thus improving the saliency detection performance of [39].
Later, Jianget al. [41] developed some high-level features
The central of data-driven saliency detection approachist are related to human faces, to predict saliency in a
is learning visual attention models from eye tracking datacene with multiple faces. Those high-level features ielu
which are obtained using an eye tracker to record fixations faice size, pose and location. For single-face image, [48] ha
several subjects on displayed images or videos. Accorglingbeen proposed to precisely model saliency of face regi@n, vi
the existing data-driven saliency detection approachesbea learning the fixation distributions of face and facial ratio
further categorized into static and dynamic saliency mitéat In dynamic saliency detection, most existing data-driven a
tasks. The static task mainly refers to image saliency tletec proaches [34]-[36], [55]-[60] concentrate on generic vile
whereas dynamic tasks primarily concentrate on videorsalie In particular, Rudoyet al. [34] proposed a novel method
detection. In the following, we review the data-drivensatly to predict the dynamic saliency of generic videos, which
detection approaches from the aspects of these two tasks.learns the conditional saliency map from fixations across
In static saliency detection, there is a large number eéveral consecutive video frames. As a result, the intanér
data-driven approaches for generic images [30]-[33],f48torrelation of visual attention is taken into account fodeo
[52] and specific images [37]-[42]. For detecting saliencsaliency detection. In [55], Zhaet al. proposed a fixation
of generic images, the representative approach is [30]. bank approach for video saliency detection, in which a bank
[30], a linear SVM classifier is learnt from eye trackings built from the primitive low-level features of color, &t-
data (1003 images observed by 15 subjects), in which higdity, orientation and motion. Recently, both spatio-terapo
, middle- and low-level features are integrated together aoherency and low rank analysis have been applied [35] for
predicting saliency regions. Besides, Hetaal. [31] proposed locating salient motion in videos. In [56], dynamic adaptiv
to learn middle-level features, i.e., gists of a scene, & tWhitening saliency (AWS-D) was proposed for detecting vide
top-down cue for detecting static saliency of generic insagesaliency, which reduces the perceptual redundancy initagat

B. Data-driven approaches



y are 40 subjectsinvolved in the experiment to watch all 76

. o y 1 % I . videos, including 24 males and 16 females aging from 21 to
D o 3
) T { l 1 ’ During the experiment, a 23-inch 1080p LCD screen, in-
’ . : A d b tegrated in the eye tracker, was used to display the videos.
: /\' t‘\‘\, . A ~ The videos were displayed at their original resolution ()20

ot T L < —a " and their display order was random to reduce the eye fatigue

c . e I effect on the eye tracking results. All 40 subjects were dske

(a) 66-point PDM (b) Mouth to watch these video without any task. Besides, the fixations

of those 40 subjects on each video were recorded by a Tobii
X2-60 eye tracker at the sampling rateGifHz.

Finally, 1,119, 368 fixations over 30,936 frames of 76
videos were collected in our database. Our database can

salient pixels based on the second-order statistics. Th& m ¢ freely downloadable via https://github.com/RenYur&201
F-DGMM, for facilitating the future research.

recent work of [57] studied how to apply learning algorithm
in effectively integrating low-level and high-level feads, .
for video saliency detection. Rather than free-view saljenB. Features extraction
detection, a probabilistic multi-task learning method wias Itis intuitive that face related features significantly urghce
veloped in [36] for the task-driven video saliency deteatim the distribution of visual attention on face videos. Befara-
which the “stimulus-saliency” functions are learnt frore tiye lyzing the relationship between face and attention distidn,
tracking data as the top-down attention models. In [58],Hdat this section addresses the extraction of face-relatedresin
and Sminchisescu established a new eye tracking databaseos, including face, facial features and mouth movement
and then proposed saliency detection models, for the task ofFace and Facial Features First of all, it is necessary
action recognition rather than free-view. In [59], Mauthneto extract face and facial features for attention analysid a
et al. proposed an encoding based video saliency detectigaliency detection. In this paper, we follow the way of [42]
approach for the task of activity recognition. Differerdrfi the to automatically segment the regions of the face and facial
above free-view and task-driven saliency detection apypires, features, by leveraging the face alignment algorithm [62].
[60] proposed a space-time saliency approach, which lecagpecifically, 66 landmark points are located according iotpo
salient frames, rather than pixels or objects. However, théstribution model (PDM) [62]. Then, some landmark points
above approaches were designed for generic saliency ibetecare connected to precisely obtain the contours of face and
of videos. They are thus ineffective in saliency detectién dacial features. Upon the contours, the regions of face and
the specific face videos, since they do not explore dynanfacial features can be extracted. Figure 2-(a) shows an gheam
variation of attention distribution within face regions. for the extraction of the face and facial features, basechen t
For specific videos, [45] extended the work of [41] td6-point PDM.
detect saliency in multiple-face videos by proposing rplgti  Intensity of Mouth Movement. We empirically find that
hidden Markov model (M-HMM). In [45], M-HMM is used the distribution of visual attention on the face in a video is
to predict the possibility of each face on attracting visuaorrelated with the movement intensity of the mouth. There-
attention. Although the face has been considered as the hitfire we need to measure the intensity of mouth movement. In
level feature for saliency detection of generic videos, fethis paper, we use the following way to quantify the mouth
works aim at modelling the saliency distribution within éac movement intensity of the-th frame (denoted byD,) in a
region for face videos. In fact, the saliency distributioh oface video. As we show in Figure 2-(b), the mouth region
face is dynamic, which may be influenced by actions of faée composed of 18 landmark points. Generally speaking,
like mouth movement. Thereby, this paper establishes an @an be determined by the difference of the width or height
tracking database for face videos, and then we learn from @aross neighboring frames, which may be computed upon the
database, to predict dynamic distribution of face saliency 18 detected points of the mouth region. Since the shape of
mouth movement varies, both width and height are included
in calculatingD;, corresponding to variation in the horizontal
and vertical directions, respectively. However, there rbay
A. Database some errors in detecting the 18 points of mouth. To reduce the

impact of these errors of,, D, is calculated by averaging

To our best knowledge, there exists no eye tracking datab@ge yore than one Euclidean distance, alongside the haizo
on face videos. Therefore, we conducted the eye tracklgg vertical direction. In our approach, we compute on 9

experiment to obtain an eye tracking database for Seveﬁjclidean distances, i.edy, ds, ds, ds, ds and dg for the

videos containing faces. The database is composed of 76 f%ﬁical distance, and-, ds, do for the horizontal distance.

videos selected from the 300-VW [61] database and YOUTukester 1o Figure 2-(b) for more details about these 9 Euctidea

Among them, 71 videos contain one face, and the rest hayigiances for computing mouth movement intensity. Finally
two faces. The resolutions of all 76 videos in our database

are 1280 x 720, and their frame rates are around 30Hz. There?2All 40 subjects have either corrected or uncorrected noewasight.

Fig. 2: An example of PDM for the face and mouth.

I11. DATABASE AND ANALYSIS
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Fig. 3: Proportions of fixations and pixel numbers in different oegi,counted on all 76 videos in our database. (a) shows typogions for the regions
of face and background, and (b) illustrates the proportminfxations over different regions of face.

the intensity of mouth movement at theth frame can be for all 76 videos. As seen in Figure 3-(a), although the face

calculated as follows, region only takes up.1% pixels in video frames, it attracts
9 " P 77.7% visual attention. Compared &2.3% fixations attracted
| LN )| e T o :
D, = Z - (1) by face€ in images [42], face region is more salient in drawing
i1 min(d§ ),d§ - )) visual attention in videos. Besides, Figure 3-(b) illustsathe

) (t—t) . ) proportions of pixels and fixations within face region. Wa ca
whered, " andd; ~ - are thei-th distance of mouth at the sq from this figure that facial features consurber% pixels
t-th and (¢ — ¢')-th g?mes, (f?;))ecnvely. In (1), the absolutg, e region ¢.7% for two eyes,6.9% for mouth and5.1%
difference betweed;” andd; " " is divided by their minimal for nose), whereas they drat.5% fixations 8.5% for eyes,
value to model the relative intensity of mouth movement.éser;g 99 for mouth and.8.1% for nose). Thus, we can conclude
¢’ is the number of frames used to determine mouth variatiofat facial features are more salient than other regionada f
which is related to the frame rate of the video. Accordindi® t for a video. This completes the analysis of Observation 1.
theory of persistence of vision [63], there exists appra@t@y  opegrvation 2: Visual attention on the face, eyes and nose
0.1 second residual for motion perception. Since the iatery,reases along with the enlarged size of face in a video,
/
between the-th and éftl)'_th frames needs to be larger thaqyhereas the attention on mouth is invariant to the face size.
motion perception in (1) is computed by Figure 4 shows the proportions of fixations belonging to the
t' =round0.1 - fr). 2) regions of the face and facial features for different fazesi

) ) _ in the 76 videos of our database. In this paper, we define
where fr is the frame rate of a video. Finally), can be f5ce size as the proportion of pixels belonging to the face
obtained using (1) and (2). Obviously, a large valueldf |qgion in a video frame. The face region is segmented using
means the high intensity of the mouth movement, which mayg way of Section III-B. In this paper, we define face size

increase visual attention on mouth region. as the proportion of pixels belonging to the face region in a
. video frame. The face region is segmented using the method
C. Database analysis described in Section IlI-B. In Figure 4, the fitting curves ar

We investigate the intrinsic factors which have an impagplotted to reflect the general trend that how proportions of
on visual attention to face videos, by analyzing the fixagiorixations in facial features change alongside increased fac
obtained from the 76 videos in our database. Intuitivelgual Sizes. From Figure 4, we can find out that when the face size
attention is not uniformly distributed in the face region obecomes larger, the proportions of fixations in face, eyes an
face videos. Upon the extraction of face related feature¥se increase. However, the proportions of fixations in fmout
we analyzed the attention distribution within face. Them, ware almost unchanged, implying that visual attention ontimou
have the following observations. Note that the technique déinvariant to the size of face in the video. This complekes t
extracting face and facial features for our database aisalys analysis of Observation 2.
to be discussed in Section IlII-B. Observation 3: Visual attention on eyes is not affected by

Observation 1. For a video, face attracts significantly moraghe eye blink, whereas more attention is drawn by the mouth
visual attention than background, and within face regiaoid when it is moving.
features (i.e., eyes, nose and mouth) are more salientthan o Before figuring out the relationship between visual attmnti
regions of the face. and mouth movement or eye blink, we obtained the ground-

First, we show in Figure 3-(a) the proportions of fixations
and pixels belonging to face and background, respectively?Note that face averagely h&s7% pixels in the whole image.
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Fig. 4 Proportions of fixations on face and facial features veraas &izes, for all 76 videos of our database. Each dot in theefistands for the statistical
result of one video. The least square fitting curves of linegression on fixation proportions of all frames in 76 videms provided (blue lines). The
Spearman rank correlation coefficients between face siddigation proportions in each region are (a) 0.82, (b) 0.88,0(65 and (d) 0.09.

o2 u blink IV. THE PROPOSED APPROACH
g  non blink 15.6% A. Framework
§ ) nm;":::::::nem In this section, we mainly discuss the proposed approach for
o 11.1% detecting saliency of face videos. In our approach, we ¥ollo
o 01 - the basic way of [39] and [42] to predict the saliency map of
.g 6.6% 6.7% each video frame by
8 M = weSY + wiS! + woSY + wrSE. (3)
o In (3), S¢, S, SY and SI" are the saliency maps of the

0 feature channels of color, intensity, orientation and fate

eyes mouth the ¢-th video frame.w¢e, wy, wo and wg are the weights
corresponding to each feature channel. In this paper, trey a
Fig. 5: Proportions of fixations in eyes and mouth with and withouf€2TNt by the least square fitting on the training data.
movement per video frame. Our approach adopts Itti's model [16] to yield saliency maps
S¢, SF and S¢ for the channels of low-level features. In
truth eye blink and mouth movement, by manually annotatirggldition to the low-level features, the face is incorpadate
all 76 videos of our databakeThen, the statistical results ofour approach. This satisfies Observation 1 that face rexeive
fixations versus mouth movement and eye blink are showmost visual attention in a video. In the following, we aim at
in Figure 5, for all 76 videos of our eye tracking databaseomputing the saliency distributid®y" of the face channel, for
From this figure, we can find that the proportions of fixationsaliency detection of face videos. Observations 2 and 4 have
on eyes are almost the same, whether the eyes blink or rusitified that the variation of face size and the action of rhout
This implies that visual attention on eyes is invariant tesy movement in a video dynamically change the distribution
movement. On the contrary, more fixations are drawn W®f visual attention on face. Thus, our approach models the
mouth (from11.1% to 15.6%) when mouth movement occurs.dynamic visual attention on face regions by proposing a new

This completes the analysis of Observation 3. distribution model called DGMM. It is worth pointing out tha
Observation 4: Visual attention on mouth increases alongf is different from the previous works of [39] and [42], whic
with the enlarged intensity of mouth movement. only use static GM or GMM to model visual attention on the

Figure 6 plots the fixation proportions of the mouth aface.
different intensities for mouth movement, with the scatter The overall framework of our saliency detection approach
analysis of all fixations on mouth regions from our databass.shown in Figure 7. Next, we introduce DGMM to model the
Here, the intensity of mouth movement is measured using tignamic distribution of visual attention on the face foread.
method described in Section 11I-B. We can see from Figure 6
that attention on mouth generally increases with the irsgéa B. DGMM for single-frame saliency detection
intensity of mou@h movement, the Spearman rank correlation,ypan processing theth frame of a face video, we can
coefflc_lent of whlch_(=0.24) is much larger than _that betwee[ﬂodel its saliency distributioSf as follows,
face size and fixation proportion in mouth regions (=0.09). . ;
This completes the analysis of Observation 4. §F _ Zﬂgl N Zﬂ/\/(ﬂL 5, @)
4Three volunteers annotated the movements of the eyes anth rimoall i=1 i=1

frames of the 76 videos. Then, the ground-truth annotatafnthe eye and . . L . L N
mouth movements were obtained by majority voting. Thesetations are WhereN(')_ is the Gaussian dlstnbutlon,_ a@’ fi; and 63
also provided along with our eye tracking database. are the weight, mean and standard deviation ofittle GM
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Fig. 6: Proportions of fixations in mouth at different intensities mouth movement. The Spearman rank correlation coeffitiere is 0.24.

G'. Similar to [42],G', G2, G3, G* andG® correspond to the movement at thé-th frame, as denoted in Section I11-B. Then,
GMs of face, left eye, right eye, nose and mouth. We use the have
same method as [42] to learn means and standard deviations Ko
of these GMs. _ wf - Zb’f . (Dt)k. (7)

In the following, we propose to learn weighfs:}>_, of k=0
each GM from training data, in accord with our observatior]ﬁ
of Section IlI-C. Assume that we havetraining video frames,
and their corresponding fixation maps % }~ ;. Note that
the fixation maps are obtained by applying a 2D Gaussi
filter to smooth the ground-truth fixations in each trainin
frame. Then, GM weight{#;*}?_, of each training frame
can be obtained by solving the followifg-norm optimization
formula:

(7), {bk}ngo and K, are the polynomial parameters and the
order of the regression, to be discussed in Section V-A with
more details. R
Finally, face salienc! of each single frame can be gener-
gted, based on (4). However, it is clear that a sudden change i
the saliency distribution of the face across neighboriagies
is rare. In other words, the saliency map of a video frame
not only depends on its observed features, but also on the
. : ik ik ok ° ~ i ik saliency distribution of face at the previous frames. Duihi®
ot ] Z”l G =Sl st Z”l =1m" >0, \ve propose the PF-DGMM algorithm in the next subsection,
oot =t (5) Which applies PF to smooth DGMM saliency distribution
where {Gi*}?_, are the GMs of the-th training frame. In across frames. As such, both the past saliency and the @fserv
our approach, we utilize the C\PX[64] to solve the above féatures can be considered in a uniform framework to output
formula. the final saliency map of the dynamic face charifelat frame
Given{#{*}3_, of all training frames, we can leafii}?_,
as follows. Observation 2 showed that visual attention ® th
face, eyes and nose depends on face size. Therefore, GQvePF-DGMM for video saliency detection
learn the relationship between face size drd}}_;, using

. ) T A= N To satisfy temporal consistency in a video, we need to
polynomlfILregressmn over the training d4tg” };_, ands;, gnaple the smooth transition of dynamic face saliency acros
where {s };_, are the face sizes of training frames. Thefames. In other words, the DGMM saliency distribution of

~i\14
{7t }iz1 can be represented by each frame should depend on the observed features at the cur-

K1 rent frame as well as the estimated DGMM of previous frames.
7l = Z ai - (s)¥, i=1,2,3,4 (6) The PF estimates the internal states in dynamic systema give
k=0 sequential observations, which has been widely used to make

wheres, is the size of face at theth test video frame. In (6), inferences on sequential data. Thus, the PF is integratiéd wi
{ai}fio are the polynomial parameters to be learnt, with the DGMM distribution, SO called Fhe PF-D(_BMM algorithm,
being the order of the polynomial function. In Section V-A](or modelmg_ the d);pamg: fa_ce sallgncy of_wdeos_. o
we provide more details about the valuesfof and {a }Kl Mathematically,S;", which is the final saliency distribution
which are obtained by training in our experimentsk F=0" of face at thet-th frame, should be predicted on the basis
Now, we move to the computation 6f, which is the weight Oflj\t;—h_a?qbsi' Note thathbo_tgsf ?nd Sy Iare moF?FelgdG't\)/lyM
of the GM belonging to the mouth. Since Observation 4 ind?-; ith IStribu |onsd Itn ?ack:ﬂ edo rame. hn our = id ¢
cated that the saliency of mouth in a video is correlated wiI®" ? wel need fo rack the 5ynam|§ changes fmGVI\I/II\(iIOS’ °
the intensity of mouth movement, we also use the polynom ?Jujt tA? va Llies %{.ﬂt}iﬂ' {“g}i;l an i{?t}iﬂdo 15
regression to learit}. Recall thatD; is the intensity of mouth y (4). After the adjustment{m;}?_;, {i}i—; and{oj};,

i=1

can be yielded as the parametersSdf, for the final output

5CVX is a Matlab-based toolbox for solving the problem of cmv Of face saliency in a video. Obviously, the centrpidof each
optimization. GM is in the center of face or facial features, and we theeefor
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Fig. 7: Framework for our approach.
Algorithm 1 Summary of our PF-DGMM algorithm to estimate 7i. However, the probability distribution of

Input: Means of DGMM {y¢ ,}3_, and DGMM parameters o8%,: {#% ,}5_,
and{&1 ,}5_,, which are obtained in Section V-B.
Output: Saliency map of the dynamic face chanSq’f
Initialize: The total number of frame&’; the total number of particlesI; the initial
sets of training parameter$7rl Yo ey, =1,
of particles: w(J) 1 andw®, ) =1
fort=1,¢<0r, t++d0 70

fori=1,¢<5,i++ do

Sample particles of parameter ando} from training setq(’) e {#7i"}Y,

andq(” c{6" Y.

Estlmate the Ilkellhooqa(wt\q“)) andp(frﬂq(?) with (14), given#} and
(7

&
Update welght:au(’) andw(’) using (13) with previous welghw(” and
-1
‘*’(Ji)
CalculateE() andE(oy) using (15).
Normalize welghts,.;( ) and w(J) via (16).
f
Setw; = E(n;) andoy = ]E(O’t)
end for

Calculate saliency distribution over facSF by 21 i W,N(Ht, a,) where
N (-) is the Gaussian distribution.

RetunS;".
end for

use detected face and facial features to obfaih}?_,. For

{mi}2_, and{c}}2_;, we can track the dynamic change bas

on the PF as follows.
Following Bayesian tracking theory [47], we taKe?}?_

., L); and the weights

p(mi|#t.,) in the above equation is not available. Therefore,
our PF-DGMM algorithm uses the Monte Carlo method to
obtainp(ri|#i.,) by introducing particles. Note that particles
qt(]) (j = 1,2,...,J) are regarded as possible valuesrofat
the ¢t-th frame, which are initialized to b&}* of the training
data. As a resultp(i|#.,) can be calculated by

Z w(])(s

whered(-) is the Dirac delta function, anmt(j) is the weight
of the j-th particleqéj ). According to PF theory 65}y can
be updated frorraut(“_)1 in the form of

—q7), (12)

7Tt|7T1 it

(3) (J)

Wy = Wy

p(#ila?).

In (13), p(#i|g\”) is the likelihood ofq!”) given #. Conse-

quently, (13) reflects the previous saliency distributif ;

at the previous frame (encoded [wﬁ)l), and the observed

saliency distributionSF at the current frame (encoded in
frt'|qt )). Generally speaking, the probability p(wt|q(]))

increases wheqt(” approaching tor:. Therefore,p(wt|q§ ))

is modeled in our PF-DGMM algorithm by

13)

and {o}}°_, as random variables. These variables can be p(7 |q(1)) = exp (| _qta)| —o), (14)
predicted by
In the above equatiom,is a constant set to 1, to fix the range
p{miYicr ot iz (A iz {01 Fim) (8)  of probability p(#i|¢") to [0, 1]. Specifically, the weights of

in which the distribution oS{” ; is embedded i{#%,,_;}2_
and {6%,_,}>_,. Besides,{#{}>_, and {6i}?_, encode ob

are both in the
J | < 1. When

Gaussian components and particIeSqt(
range of[0,1]. Thus, we have) < |7} —

servedS? of the current frame, Consequently, the values ¢f = 1. the range ofexp(|7; — | - o) is g e~',1], which
)

{Wt}5 1 and {Ut}

. depend orS, and S~ . It is obvious is C [0,1]. Consequently, probability(#;|q\’

is restricted

that {r{}>_, and {a’t} _, in DGMM are |ndependent of eachto [0, 1] in the above equation via setting= 1. Given (11)

other. Thereby, (8) can be decomposed as
p({ﬁi}?=1|{7}i:t}?=1)a ()]
and

p({ai}?

Assuming that the elements éfr:}>

(10)

1|{U1 t}z 1)

_, are not correlated

and (12),7} can be obtained by setting it equivalent to its
expectation:

(15)

J
E(r{) = Y wi'e”,
j=1

with w? obtained from (13) and (14).
At last, we need to normallzet]) for the next frame by

with each other in (9), we can utilize the following expeat o following equation:

of 7Tt

E(r}) = / p(i|id, b, (1)

o

J
Z] 1 wt(])

W =

(16)



TABLE | The learnt polynomial coefficients?

features| face | left eye | right eye | nose
ajy, =1 1 =2 =3 1 =4

k=0 0.52 -0.07 -0.07 0.11
k=1 -7.13 5.49 5.49 7.39
k= 23.09 | -17.99 -17.99 | -28.01
0.182
0.181

=

o

£ 018

5 0.

2

E 0.179

=
0.178
0.177

1 2 3

Polynomial order K2

Fig. 8: Fitting error along with different values of polynomial @mdKo.

Furthermore, we use the similar way to compyte}?_;.

learnt for encoding the relationship betwegti }!_; and s;

with (6). Besides, the order df; in (6) is empirically set to

be 2. The learnt coefficients are reported in Table I.
Learn mouth-related GM weights. As shown in (7), the

weight of the GM belonging to the mouth, i.&;, is correlated
with the mouth movement intensitp;. Similar to learning

{#1}+_,, we train polynomial coefficientgby}+2, for #7.
To determine the ordeK, of the regression in (7), Figure
8 plots the fitting error over all training samples, at diffier
K5. As shown in this figure, the fitting error is converged
when K, > 1. This indicates that the weight of mouffy is
linearly correlated withD;. Therefore, we sek’> = 1 in our
experiments. Ther;? = by + by - D, achieves the least square
error over all training samples, whép = 0.18 andb; = 0.02.
Consequently, after the least square fitting, the valués ahd
b, are 0.18 and 0.02 in our experiments, respectively.
Particles for PF-DGMM. Given above learnfa} }}_; and
bi, {7i}? can be estimated using (6) and (7) with respect to
s; and Dy, for each training frame. Then, the estimated }?
of all training frames are used as the particles of the GM
weights. Similarly, we use the estimated standard deviatio
of all training frames as the particles of standard dewvietio
of GMs. Note that the total number of particles lig, 592,
equaling to the number of all training frames.

Finally, S/ can be achieved as saliency distribution of the

face channel at each frame. Our PF-DGMM algorithm
summarized in Algorithm 1.

V. EXPERIMENTAL RESULTS

In this section, we evaluate the effectiveness of our P

B. Evaluation on our database

Evaluation metrics. In our experiment, we utilize the
following metrics to evaluate the accuracy of saliency dete
tion: normalized scanpath saliency (NSS), linear coriatat
fCC) and area under ROC curve (AUC). NSS quantifies the

DGMM approach in detecting saliency of face videos, Vigegree of correspondence between human fixation locations

comparing with other 10 state-of-the-art approaches. Neat
present the parameter settings used in our experiment.

A. Settings

In our experiment, all 76 videos in our database, which
discussed in Section IlI-A, are divided into two groups: t
training and test sets. Specifically, the training set is posed
of 30 videos randomly selected from our database. It in&u
14,592 frames with 523,929 fixations. The other 46 vide

form the test set, the results of which are to be reportg%’

in Section V-B. Here, all fixations falling into face regiéns
(in total 407, 093 fixations) are selected from 14,592 trainin
frames. Given those training fixations, we apply the follogvi
way to learn the weights of GMs.

Learn face-related GM weights.As mentioned in Section
IV-B, the weights{#;{}} , of each GM, i.e., face, left eye
right eye and nose, should be related to the face sizdo
this end, we first convolute all fixations in each trainingieg
to obtain the ground-truth saliency mafl§'}~_,. Afterwards,

the optimal weight of each GM can be estimated for eadl!

training frame, i.e.{#i*}>_,, via making DGMM distribution

as close to{S; } 2, as possible. Givefi7i*}>_, of all 14,592
training frames, the polynomial coefficienfs}}1*, can be

6All faces across different videos are re-scaled into a umifgoordinate
before learning the distribution.

and saliency maps. CC measures the strength of the linear cor
relation between human fixation maps and predicted saliency
maps. AUC computes the area under ROC curve, reflecting the
tradeoff between the false positive rate and true posite.r

e larger NSS and CC indicate higher accuracy of saliency

ajde la . .
hg%tectlon. Besides, the closer the AUC value is to 1, the more

accurately the approach can predict human attention.

de Evaluation results. Here, we evaluate on all 46 test videos

our database, with other 30 videos being training data.
r the evaluation, we compare our approach with 10 other
approaches (i.e., Ce#t al. [39], Zhou et al. [60], Guoet

I. [21], Zhao et al. [40], Rudoy et al. [34], Xu et al.

42], Hosseinet al. [28], WangSeg [14], WangSal [11] and
SALICON [32]) to verify the effectiveness of our approach.
The comparison results are presented in Table I, in terms of
NSS, CC and AUC values with means and standard deviations.
As we can see from this table, our approach outperforms other
10 approaches in terms of all three metrics, With0 in NSS,

0.84 in CC and0.94 in AUC. Specifically, our approach has
improvement of at leadt.41 in NSS and0.07 in CC
compared to other approaches. It is worth pointing out that
NSS and CC, especially NSS, are more reasonable metrics
than AUC in evaluating saliency accuracy, according to the
analysis of [66]. Thus, the results of Table Il imply that
our approach significantly advances state-of-the-aresayi
detection in face videos. Besides, the gain of our approach
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(a) Input  (b)Human (c)Ours (d) Cerf (e) Zhou (f) PQFT (g) Zhao  (h) Rudoy (i) Xu (j) oBDL (k)WangSeg ()WangSal (m) SALICON

Fig. 9: Saliency maps across different frames (the 84th, 109thth1@td 203rd frames) of a randomly selected video, gererayeour and other 10
approaches, as well as the human fixations.

(a) Input (b)Human (c) Ours (d) Cerf (e) Zhou (f) PQFT (g) Zhao  (h) Rudoy (i) Xu () oBDL  (k)WangSeg ()WangSal (m) SALICON

Fig. 10: saliency maps of some videos at different face sizes, gemkhey our and other 10 approaches, as well as the human fisatio

over [42] verifies the effectiveness of making GMM dynamic Time Complexity
in videos, since face saliency is modeled by GMM in [42] SALICON 2370
while it is represented by DGMM in our approach. Wang(sal) 11.60
Subjective results.Figures 9 and 10 illustrate the saliency Wang(seg) 11.36
maps of some selected video frames, generated by our method 0BDL 1481
and other 10 approaches. As we can see from these two Xu 8.40
figures, the saliency maps of ours are much closer to the Rudoy 4198
ground-truth of human attention maps, than those of other zhao 8.5
10 approaches. Such results mean that our approach can PQFT 494
well locate the salient regions. Figure 9 shows the saliency Zhou 9.14
maps across different frames in a same video, and we can Cerf 593
see that our approach precisely identifies the saliencygehan Our approach N 8.89
due to mouth movement, while other appl’oaCheS, eSpeCially 0.00 500 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00
[42], have almost no reaction to this type of movement. This s/frame

confirms the effectiveness of our PF-DGMM model, which

enables the dynamic transition of GMM between frames f(ijlg 11:Running time per frame of 720p, for our approach and oth¢esta

modeling saliency of videos. Figure 10 further shows thg-the-art approaches.

saliency maps of different videos with faces of various size

Our approach is capable of predicting human attention well,

regardless of face size. This further verifies the effectdss [39] and PQFT [21]. However, our approach performs much

of our approach in saliency detection of face videos. better than these approaches in saliency detection aggcasic
Time complexity evaluation. The above performance eval-can be seen in Table Il. More importantly, the computational

uation has demonstrated that our approach performs biedier ttime of our approach is comparable to or less than those

other approaches in saliency detection accuracy of faaosgid of other state-of-the-art approaches, despite perforr@iter

It is interesting to further compare the time complexity af o than these approaches. This indicates efficacy and efficienc

and other approaches. In our experiments, the computatioaour approach in saliency detection of face videos.

time of saliency detection is recorded by running our aneéioth

approaches for 720p videos in Matlab 2014a and a computer

with an 17-4771 @3.50GHz and 16G memory. Then, th% Evaluation on other databases

computational time per frame is obtained and shown in FigureTo test the generalizability of our approach, this section

11, for our and other approaches. We can see that our approaadiuate face videos from other databases. We selectdly tota

consumes more time than the early works of Cetfal. 28 videos including one obvious face from the existing eye
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TABLE II: The comparison of our, PF-DGMM channel, and other appraaahenean (standard deviation) of AUC, NSS, and CC, for allet videos
of our database.

Metrics Our Cerf [39] Zhou [60] PQFT [21] Zhao [40] Rudoy [34] Xu [42] OBDL [28] WangSeg [14] WangSal [11] SALICON [32]
NSS 5.201.36) | 2.41(059) | 2.07(0.75) | 1.16(0.80) | 3.01(1.01) | 2.15(0.82) | 4.79(1.06) | 1.58(1.21) 2.00(0.85) 1.73(1.00) 451(1.21)
cC 0.840.10) | 0.58(0.10) | 0.50(0.15) | 0.25(0.15) | 0.77(0.11) | 057(0.13) | 0.77(0.12) | 0.31(0.14) 0.48(0.19) 0.42(0.22) 0.57(0.20)
AUC 0.940.03) | 0.02(0.04) | 0.88(0.06) | 0.81(0.07) | 0.940.03) 0.88(0.06) | 0.93(0.06) | 0.82(0.07) 0.58(0.21) 0.57(0.20) 0.76(0.12)

TABLE IlI: The comparison of our and other approaches in AUC, NSS, anda@gaged over face videos of other database.

Metrics Our approach Cerf [39] Zhou [60] PQFT [21] Zhao [40] Rudoy [34] Xu [42] OBDL [28] WangSeg [14] WangSal [11] SALICON [32]
NSS 3.53 1.91 1.30 1.00 2.63 2.36 3.19 1.31 1.45 1.63 2.73

CcC 0.64 0.46 0.32 0.21 0.58 0.59 0.62 0.34 0.37 0.43 0.48
AUC 0.91 0.87 0.78 0.80 0.89 0.89 0.87 0.82 0.85 0.86 0.88

(a) Input (b)Human (c)Ours (d)Cerf (e)Zhou (f)PQFT (g) Zhao (h)Rudoy (i) Xu () OBDL (k)WangSeg (1)WangSal (m)SALICON

Fig. 12: saliency maps of face videos selected from other datab&§es,[67], DIEM [68] and Hollywood [58].

tracking database of videos, SFU [67], DIEM [68] and HolPF-DGMM channel achieves 4.43 in NSS, 0.84 in CC and

lywood [58]. They are all tested in our experiment. Note th&.92 in AUC, far better than those of our approach without

we use the same training set as Section VI-B, which includéee PF-DGMM channel. This indicates the effectiveness of

30 face videos. the proposed PF-DGMM algorithm in dynamically modeling
Figure 12 shows the saliency maps of our and other Hftention on face.

approaches, for the selected frames of four test videos. Iirjgyre 13 further shows the performance of each individual
is obvious that saliency maps of our approach are clos@{annel of color, intensity and orientation, which are also
to ground-truth human fixation maps than other approaChﬁ%orporated in our approach. We can see from this figure
Table Il further tabulates the NSS, CC and AUC results fat the proposed PF-DGMM channel achieves considerably
our and other approaches, averaged over all 28 test vidgRgter performance than each individual channel, i.eorcol
of other databases. As aforementioned, it has been provedikpénsity and orientation. Additionally, Figure 13 showeet
[66] that AUC is not a robust metric for evaluating Sa“e”CXBerformance of our approach, which integrates the proposed
whereas NSS is the most robust one. From Table Ill we Cgi:_pGMM channel with other channels of color, intensity and
find that our approach again performs better than all othgfientation. We can see from this figure that when integrated
approaches. Specifically, there is 0.34 NSS enhancemenygh, the channels of color, intensity and orientation, the
our approach over the second ranking approach [42], similg& formance of PF-DGMM can be improved from 4.43 to 5.20
to the 0.41 improvement in NSS on our database. Hence, {3gNss, 0.78 to 0.84 for CC, and 0.92 to 0.95 for AUC. Thus,

generalizability of our approach confirmed. the effectiveness of feature integration can be validated.
) Now, we analyze the failure cases of our approach in de-
D. Performance analysis of our approach tecting saliency of face videos. Figure 14 shows four exampl

As discussed in Section IV, PF-DGMM is a new featuref failure cases, belonging to two videos. As seen in the
channel proposed in our approach for modeling dynamic-attesecond and third rows, the faces are missed by the face
tion on face. Hence, it is interesting to analyze the perforoe  alignment method utilized in our approach. In this case, our
of the single PF-DGMM channel for saliency detection in facapproach can only apply the traditional feature channels of
videos. To this end, we evaluate the component quantitativelor, intensity and orientation, in saliency detectioowéver,
results for our approach. Specifically, we evaluate NSS, G&ce still attracts most visual attention, such that theesay
and AUC of only applying the PF-DGMM channel in detectingnaps of our approach are far from the ground-truth attention
saliency, averaged over all test videos in our database. Roaps. Therefore, more robust face alignment is required for
comparison, we also evaluate the performance of our apbroaacceeding in saliency detection of face videos. We cahdurt
without the PF-DGMM channel. The results are reported see from the first row of Figure 14 that the lady wearing
Figure 13. We can see from this figure that the propossednglass attracts little attention in the eye regions, dugne
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Fig. 13: AuC, CC, and NSS results for single channels (PF-DGMM, cdiatensity and orientation) and the combination of thre¢tdm-up channels
(color, intensity and orientation).

occlusion of eye regions. Although face alignment applied emotional behavior, by considering the more attractivéoresg
our approach is able to detect the face region, our salierioyface. Upon the study of this paper, it is expected that the
detection approach still fails in this case. It is because tleoding efficiency of face videos can be further improved by
eye regions are with some kind of saliency in our approaatemoving the perceptual redundancy existing in the noiessial
not in accordance with ground-truth attention map. The lastgions. In this way, we can use fewer bits to encode and
row of Figure 14 shows that the occlusion of mouth by thigansmit face videos, to relieve the bandwidth-hungryrditea
hand makes fixation distribution not follow Gaussian modetaused by the prevalence of video conferencing applicgition
In this case, our DGMM distribution of saliency does meet theg., FaceTime, Skype, and even Wechat.

distribution of ground-truth attention on the occluded tmou

region. For this case, it is necessary to study the influefice o REFERENCES
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