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Abstract—High efficiency video coding (HEVC) is the latest
video coding standard, and it has the best performance among
all the existing standards. HEVC main still picture profile
(HEVC-MSP) also achieves top performance in image compr-
ession. In this paper, we propose a closed-form bit allocation
approach to optimize the saliency-guided PSNR (viewed as
perceptual distortion) such that the coding efficiency of HEVC-
based image compression can be significantly improved from a
subjective perspective. Specifically, a bit allocation formulation is
established to minimize perceptual distortion with a constraint
on bit-rates. Then, this formulation is solved using the proposed
recursive Taylor expansion method with a closed-form solution. On
the basis of our solution, a bit allocation and re-allocation process
is developed in our approach to minimize perceptual distortion,
meanwhile accurately controlling bit-rates. In addition, we provide
both theoretical and numerical analyses of the computational
complexity, verifying the little extra time cost of our approach.
The experimental results demonstrate the superior performance
of our approach over the state-of-the-art HEVC-MSP, and the BD-
rate savings are approximately 40 % and 24 % for face and generic
images, respectively.

Index Terms—High efficiency video coding (HEVC), perceptual
image compression, saliency detection.

I. INTRODUCTION

T PRESENT, multimedia applications, such as Facebook
A and Twitter, are becoming integral components in the daily
lives of millions, leading to the explosion of big data. Among
them, images are one of the largest types of big data [2], thus
posing a great challenge to the limited communication and stor-
age resources. As reported by [3], more than one million images
are “making their way” to Facebook every hour. Meanwhile, due
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to more powerful camera hardware, the resolutions of images
are significantly increasing, further intensifying the hunger on
communication and storage resources. Aiming at overcoming
this resource-hungry issue, a set of image compression stan-
dards have been proposed to condense image data, e.g., JPEG
[4], JPEG 2000 [5], JPEG XR [6], and WebP [7]. Recently,
some cloud-based image compression methods (e.g., [8]) have
also provided a promising way to compress one image using a
number of similar images in the cloud.

Compared with image compression standards, several video
coding standards, such as H.264/AVC [9] and VP9 [10], have
shown the same or even better performance for compressing
still images. Most recently, as the successor of H.264/AVC,
High Efficiency Video Coding (HEVC) [11] was formally ap-
proved in April, 2013. In HEVC, several new features, e.g., the
quadtree-based coding structure and intra prediction modes with
33 directions,! were adopted. Consequently, the HEVC Main
Still picture (HEVC-MSP) profile [12], which is designed for
still picture compression, achieves the best performance among
all the state-of-the-art standards on image compression, with an
approximately 10% (over VP9) - 40% (over JPEG) improve-
ment in bit-rate savings [13]. However, all existing standards,
including HEVC-MSP, primarily focus on removing statisti-
cal redundancy by adopting various techniques [14], e.g., intra
prediction and entropy coding. Further reducing statistical re-
dundancy may help to improve coding efficiency, but at the cost
of extremely high computational complexity.

Koch et al. [15] investigated that the bandwidth between the
human eyes and brain is approximately 8 Mbps, which is far
insufficient to process the visual input captured by millions of
optical cells. Thus, the human eye is mostly at a quite low res-
olution, except for a small area at the fovea (visual angle of
approximately 2°), which is called the region-of-interest (ROI)
in the image compression community. Meanwhile, as pointed
out by [16], human ROIs are similar across different individu-
als. It is also well known [17] that the coding mechanism can be
modified to cater to the HVS by moving bits from non-ROIs to
ROIs to achieve better subjective quality. This is also illustrated
in Fig. 1(b) and 1(c). Several perceptual image compression
approaches [18]-[21] have been developed on the basis of this
modification. For example, in [18], the diagnostically useful
regions (i.e., ROIs) are encoded losslessly using S-transform,
whereas the other regions are compressed using a lossy wavelet
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1520-9210 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.


https://orcid.org/0000-0003-4979-9290
https://orcid.org/0000-0002-0277-3301

156

CTU Numbers Bit Allocation (%)

0 10 20 30 40 S0 60
® CTUs in ROIs = CTUs in non-ROIs

010 20 30 40 50 60 0 50 90 100
= Bits in ROIs = Bits in non-ROIs

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 20, NO. 1, JANUARY 2018

Bit Allocation (%)

010 20 30 40 50 60 70 80 90 100
= Bits in ROIs = Bits in non-ROIs

Bit Allocation (%)

010 20 30 40 50 60 70 80 90 100
= Bits in ROIs = Bits in non-ROIs

(a) Heat map (b) No emphasis

Fig. 1.

(c) Well balanced (d) More emphasis

Example of HEVC-based image compression for the Lena image, with different bit allocation emphasis on ROIs. Note that (a) is the heat map of eye

fixations; (b), (¢), and (d) are compressed by HEVC-MSP at 0.1 bpp with no, well-balanced, and more emphasis on face regions. The DMOS scores (to be discussed
in Section V) for (b), (c), and (d) are 63.9, 57.5, and 70.3, respectively. (a) Heat map. (b) No emphasis. (c) Well-balanced. (d) More emphasis.

zerotree. In this way, the ROIs can be ensured with high quality
to improve the overall subjective quality. For generic images, an
ROI-based set partitioning in hierarchical trees (SPIHT) algo-
rithm was proposed in [19]. In this algorithm, the ROI com-
pression is achieved by modifying the information order of
the SPIHT structure and by emphasizing the transform coeffi-
cients belonging to the ROIs. In [20], perceptual image compres-
sion is achieved by maintaining the discrete wavelet transform
(DWT) coefficients in ROIs while reducing some coefficients
in non-ROIs, which is based on a type of saliency detection
method. In addition, in [21], the ROIs specified by the users are
endowed with high priority by locating the corresponding seg-
ments in the master bitstream of JPEG 2000. However, through
our investigation, the substantial low quality in non-ROIs may
also significantly degrade image quality, as shown in Fig. 1(d).
Thus, how many bits should “move” from non-ROIs to ROIs,
together with accurate ROI detection, is crucial for image com-
pression. In other words, we need to ensure that the detected
ROIs are the regions that attract human attention, and then bit
allocation needs to be optimized according to ROIs, targeting
minimal overall perceptual distortion. To our best knowledge,
there exists no bit allocation work that has a closed-form opti-
mization on the subjective quality of compressed images with
a bit-rate constraint, in the state-of-the-art HEVC-based image
compression.

In this paper, we propose a closed-form bit allocation ap-
proach to minimize the perceptual distortion. Consequently, the
coding efficiency of the state-of-the-art HEVC-MSP can be sig-
nificantly improved from a subjective perspective. Specifically,
the most recent work [22] has pointed out that eye-tracking
weighted PSNR (EWPSNR), which is the combination of eye-
tracking fixations and mean square error (MSE), is highly cor-
related with subjective quality. Due to the unavailability of
eye-tracking data, we utilize the saliency weighted PSNR (SW-
PSNR) instead as the perceptual distortion to approximate sub-
jective quality. Automatic saliency detection is thus the first step
of our approach for saliency-guided image compression. In our

approach, we leverage on our most recent face saliency detection
method [23] for compressing face images and a latest saliency
detection method [24] for compressing other generic images.
Note that face and non-face images are automatically classified
using the face detector in [23]. Then, we propose a formulation
to minimize perceptual distortion with reasonable bit allocation
on compressed images. Unfortunately, it is intractable to obtain a
closed-form solution to the proposed optimization formulation
because the formulation is a high-order algebraic equation, and
its non-integer exponents vary across different coding tree units
(CTUs). We thus develop a new method, namely, recursive Tay-
lor expansion (RTE), to acquire the solution for optimal bit al-
location in a closed-form manner. In the proposed RTE method,
we iterate a third-order Taylor expansion to reach the optimal
solution for bit allocation. We also develop an optimal bit re-
allocation process to alleviate the mismatch between the target
and actual bits, while maintaining perceptual distortion opti-
mization. We further verify via both theoretical and numerical
analyses that little time cost is incurred by our approach.

This paper is an extended version of our conference paper [1]
with extensive advancements. Specifically, the application of
[1] only focuses on face images, whereas this paper extends the
application to all generic images by adopting a saliency detec-
tion method [24] for non-face image compression. This paper
also advances the derivation of the proposed RTE method with
more thorough analysis and solid proofs. Beyond the numer-
ical analysis of [1], the theoretical analysis on computational
complexity is also provided in this paper. Additionally, more
comprehensive experimental results are presented to validate the
rate-distortion (R-D) performance of our approach. In addition
to the R-D evaluation, this paper also enhances the assessment
by offering the accuracy of rate control (RC) at both the pic-
ture and CTU levels. In summary, our main contributions are
as follows:

1) We present a formulation to optimize the perceptual dis-

tortion of HEVC-based image compression by adopting
image saliency in the subjective quality metric.
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2) We propose the RTE method to solve the optimization for-
mulation on bit allocation, followed by a bit re-allocation
process to accurately control bit-rates.

3) We analyze the computational complexity using both theo-
retical and numerical aspects, verifying the little extra time
cost.

The contribution of our paper primarily differs from the state-
of-the-art in three aspects. First, our approach designs a formu-
lation on subjective quality optimization for the latest image
compression standard of HEVC-MSP, whereas the majority of
other works focus on the optimization for previous image com-
pression standards, such as JPEG, JPEG 2000, and JPEG-XR
[18]-[20], [25]-[51]. Second, our approach derives the closed-
form solution with little extra time on optimizing the subjective
quality for image compression. In contrast, the existing works
do not include any optimization2 [18]-[20], [34]-[41] or have
sub-optimal solutions [42]-[51]. Third, our approach involves
an optimal bit re-allocation process for accurate RC, whereas
the state-of-the-art RC approaches [52], [53] in HEVC-MSP
equally re-allocate bits or even do not incorporate any bit re-
allocation process [18]-[20], [25]-[51].

The remainder of this paper is organized as follows. In
Section II, we review the related works on perceptual image
compression. Then, Section III provides the details of the pro-
posed approach. Subsequently, the computational complexity
of the proposed approach is analyzed in Section IV. Finally,
Section V presents the experimental results, and Section VI
concludes this paper.

II. RELATED WORKS

The main goal of image compression is to enhance coding
efficiency by either reducing bits or improving quality. More
importantly, the quality perceived by the HVS, called subjective
quality, needs to be improved for enhancing coding efficiency
since human beings are the final ends of image compression.
However, MSE, a common metric of visual quality, has been
argued [54] in many works to be insufficient in terms of correla-
tion with subjective quality. Consequently, extensive approaches
[55] focus on exploiting the HVS to improve subjective quality
rather than MSE, which fall in the scope of perceptual image
compression.

Many ongoing approaches on mimicking the HVS have shed
some light on perceptual image compression. Several common
features of the HVS [55], [56] have been studied and then ap-
plied in image compression. In terms of enhancing the coding
efficiency of perceptual image compression, the related works
can mainly be classified into two categories: bit reduction to
maintain a desired perceptual distortion and quality improve-
ment with a bit-rate constraint.

A. Bit Reduction at a Desired Perceptual Distortion

Many approaches [25]-[33] incorporate just noticeable differ-
ence (JND) [57] and other features of the HVS to save bit-rates
while maintaining an almost unchanged subjective quality for

>Those approaches only increase the amount of bits in ROIs.

the compressed images. JND represents the discrimination abil-
ity on the difference between two or more stimuli. Based on
JND, the just not noticeable difference (JNND) threshold is uti-
lized in [30] for the perceptual compression of medical images
to reduce the irrelevant information. Recently, based on the free-
energy principle, an advanced JND model was proposed in [31].
With this JND model, the bit-rates can be saved for image com-
pression. Moreover, in [32], an adaptive down-sampling coder
was proposed to save bits and computational complexity by
comparing whether the differences between down-sampled and
original pixels exceed a pixel-wise JND model. Furthermore, to
minimize bits at a given perceptual distortion, a discrete cosine
transform (DCT)-based locally adaptive perceptual image com-
pression [29] was proposed to iteratively approach the desired
perceptual distortion, in which the JND threshold is estimated
via contrast sensitivity on background luminance and contrast
masking. In addition to contrast sensitivity and contrast mask-
ing, Liu et al. [27] adopted an additional factor to calculate
JND, i.e., luminance masking, for perceptual compression in
JPEG 2000. Similar to [29], by iterating to reach the desired
distortion, the minimum bits can be achieved in [27]. Recently,
Zhang et al. [33] proposed to optimize the overall rate-distortion
performance across all DCT bands according to a derived JND-
based quantization table. Then, it iterates to reach the target
distortion while maintaining the minimum bits. However, the
above approaches are too time consuming to be applied due to
the brute force search for the optimal solution.

In addition to JND models, other bit reduction approaches
have also been developed for perceptual image compression,
e.g., the suprathreshold distortion approaches [58], edge-based
approaches [59], and other bio-inspired approaches [60]. Nev-
ertheless, all these approaches for bit reduction can hardly be
used in resource-limited applications, in which the subjective
quality needs to be improved at given bit-rates.

B. Subjective Quality Improvement With a Constraint on
Bit-Rate

When the bandwidth and storage resources are limited, peo-
ple prefer to “receive” subjective quality that is as favorable as
possible. The approaches for subjective quality improvement
thus provide the accessibility to this end [18]-[20], [34]-[41].
A common way to achieve this goal in these approaches is to
allocate relatively more bits in ROISs to ensure acceptable quality
in these regions. For medical images, ROI-based image com-
pression has been widely studied [35]. Later, Liu et al. [34] pro-
posed a significant bitplanes shift (PSBShift) approach to ensure
higher quality in ROIs than in non-ROIs for perceptual JPEG
2000, which flexibly combines two types of ROI-based meth-
ods [61], [62]. Recently, an advanced PSBShift approach was
proposed in [39] for more flexible RC in JPEG 2000. Moreover,
with the progressive streaming of JPEG 2000 and JPEG, a novel
ROI image compression scheme [38] was proposed to improve
the quality of ROIs. This scheme adopts the rate-distortion-
complexity tradeoff with a jointly suboptimized residual vector
quantizer (JSRVQ) method. Moreover, in [40], the less blurred
regions are considered to be the ROIs, which are allocated with
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more bits. Besides, benefiting from the most recent deep learn-
ing technique, the ROIs are automatically detected in [41] by
a convolutional neural network (CNN) and are then encoded
with higher quality. The above approaches primarily improve
the fidelity of ROIs, but they may fail in ensuring the overall
subjective quality, as extremely low quality on non-ROIs can
also degrade the subjective quality. In this paper, our approach
optimizes the overall subjective quality for HEVC-MSP, differ-
ent from the above approaches that only increase bits in ROIs.

Several approaches have been proposed to improve the over-
all subjective quality [42]-[51]. The initial approach of ex-
ploiting rate-versus-distortion can be traced back to [42] for
monochrome images. In [42], the perceptual distortion, mod-
eled by weighted MSE (WMSE), is minimized by an empirical
optimal weighting function. Recently, Chen et al. [45] proposed
to automatically produce probable ROI masks with a speci-
fied initial point in JPEG 2000. By embedding such masks into
rate-WMSE optimization, the images can be compressed with
favorable perceptual quality and high PSNR values. In addition,
Channappayya et al. [44] adopted structural similarity (SSIM)
for perceptual distortion optimization. In their work, the optimal
bit allocation is approached by a bound constraint mechanism
on SSIM in the DCT domain, thus realizing optimization on
SSIM. Later, a multi-scale mean SSIM (MSSIM) was applied
in [48] as the metric for estimating the overall subjective quality.
Then, the bit allocation was optimized by iterating the quantiza-
tion parameters (QPs) to make the multi-scale MSSIM of each
block roughly identical. Unfortunately, it is intractable to es-
tablish a closed-form relationship between bit-rates and SSIM
[44], thus leading to sub-optimal results during bit allocation.
Furthermore, in [50], an SSIM-based metric was utilized and
optimized to choose the best coding tiling from a multi-tree
dictionary. As the optimal result cannot be analytically solved,
an MSE-based RDO was adopted as an alternative in [50], fol-
lowed by a dynamic programming technique to find the optimal
tiling mode. Moreover, a perceptual compression work towards
high dynamic range images was also proposed in [51], which
introduces an iteration process to optimize the enhanced tone
mapped image quality index (TMQI). In [49], a perceptual cod-
ing scheme was proposed by adopting a simple yet effective
metric, which combines the texture masking effect and con-
trast sensitivity function. However, this scheme requires a post-
processing on the decoder side. To effectively bridge the gap
between perception and bit-rates, another way is to take into ac-
count visual attention in image compression, the effectiveness
of which has been verified in [63]. In this paper, our approach
can obtain the closed-form solution with little extra time for
optimizing the overall quality, rather than the sub-optimization
solution in the above works.

Specifically, we propose a closed-form solution for the bit al-
location of HEVC-based image compression, which optimizes
the perceptual distortion. The perceptual distortion is measured
in terms of the combination of saliency and MSE. Our moti-
vations are three-fold: 1) HEVC-MSP retains the top perfor-
mance among all existing standards [13], 2) combining saliency
weight and MSE is simple yet effective in modeling subjective
quality [63], and 3) our approach enjoys the closed-form bit
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allocation (by our RTE method) to minimize perceptual dis-
tortion for HEVC-MSP. Consequently, the coding efficiency of
HEVC-MSP can be greatly enhanced at a given bit-rate from
the perspective of subjective quality.

III. MINIMIZING PERCEPTUAL DISTORTION WITH
OUR RTE METHOD

In this section, we primarily focus on minimizing the percep-
tual distortion of HEVC-MSP, i.e., catering to the visual quality
of detected ROIs. To this end, we first transplant the R-A RC
approach [53] into HEVC-MSP in Section III-A. Upon this, an
optimization formulation is proposed in Section III-B, which
aims at maximizing the SWPSNR at a given bit-rate for each
image. The RTE method is then proposed in Section III-C to
solve this formulation with a closed-form solution. In this way,
the perceptual distortion can be minimized via bit allocation.
In addition, we develop an optimal bit re-allocation method in
Section III-D to alleviate the mismatch between the target and
actual bit-rates.

A. Rate Control Implementation on HEVC-MSP

The latest R-A approach is proposed in [53] for RC in HEVC.
Since we concentrate on applying RC to image compression, the
CTU level RC in one video frame is discussed here. Specifically,
for HEVC, it has been verified that the hyperbolic model can
better fit the rate-distortion (R-D) relationship [53]. Based on the
hyperbolic model, an R-A model is developed for bit allocation
in the latest HEVC RC approach, where X is the slope of the
R-D relationship [64]. Assuming that d;, r; and A; represent the
distortion, bits and R-D slope for the i-th CTU, respectively,
the R-D relationship and R-A model are formulated as follows:

d; = Ci’l“iik' (1)
and
A= 0 ciki oM ()
a’f’i

where ¢; and k; are the parameters that reflect the content of
the ¢-th CTU. In the R-A approach [53], r; is first allocated
according to the predicted mean absolute difference (MAD),
and then its corresponding A; is obtained using (2). By adopting
a fitting relationship between X; and QP, the QPs of all CTUs
within the frame can be estimated such that RC is achieved in
HEVC. For more details, refer to [53].

However, for HEVC-MSP, ¢; and k; cannot be obtained when
encoding CTUs. Thus, it is difficult to directly apply the R-A
RC approach to HEVC-MSP. In the work of [52], the sum of the
absolute transformed differences (SATD), calculated by the sum
of Hadamard transform coefficients, is utilized for HEVC-MSP.
Specifically, the modified R-A model is

N\ Bi
i = o (8) 3)
T

where «; and ; are constants for all CTUs and remain the
same when encoding an image. Moreover, s; denotes the SATD
for the i-th CTU, which measures the CTU texture complexity.
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Nevertheless, SATD is too simple to reflect image content, lead-
ing to an inaccurate R-D relationship during RC.

To avoid the above issues, we adopt a pre-processing process
in calculating ¢; and k;. After pre-compressing, the pre-encoded
distortion, bits and A can be obtained for the i-th CTU, which
are denoted as J,-, 7; and A;, respectively. Then, the RC-related
parameters, ¢; and k;, can be estimated upon (1) and (2) before
encoding the i-th CTU

4)

and

By =2t (5)

With the estimated ¢; and k;, the RC of the R-\ approach [53]
can be implemented in HEVC-MSP.

Here, a fast pre-compressing process is developed in our ap-
proach, which sets the maximum coding unit (CU) depth to O for
all CTUs. We have verified that the fast pre-compressing pro-
cess slightly increases the computational complexity by a 5%
burden, which is slightly larger than the 3% of the SATD-based
method [52]. However, this process is able to well reflect the
R-D relationship, as to be verified Section V-D.

B. Optimization Formulation on Perceptual Distortion

The primary objective of this paper is to maximize percep-
tual distortion for HEVC-based image compression. In our
approach, the SWPSNR is applied to measure the perceptual
distortion, as [63] has shown that SWPSNR is highly correlated
with subjective quality. For SWPSNR, the pixel-wise saliency
values need to be detected as the first step in our approach,
and these values are used for weighting the MSE. In this pa-
per, we utilize two state-of-the-art saliency detection methods
for calculating SWPSNR. Specifically, the latest boolean map
based saliency (BMS) method [24] is applied in modeling SW-
PSNR for generic images. Furthermore, for face images, our
most recent work [23] has better accuracy in saliency detection
than the BMS method. Thus, when computing the SWPSNR
of face images, we use the work of [23] to obtain the salie-
ncy values.

Here, we denote w; as the average saliency value within the
i-th CTU. Meanwhile, we calculate distortion d; by the sum of
pixel-wise square error for the i-th CTU. Then, based on d; and
w;, the optimization on SWPSNR at a given target bit-rate R
can be formulated as

min 721 1 Wid;
S w;

In (6), M denotes the number of CTUs in the image. By using
the Lagrange multiplier A, (6) can be turned to find the minimum
value of R-D cost J [64], which is defined as

S (B ywid,

t. M r; = R. (6)

A (23X ). (7)

By setting the partial derivatives of (7) to zero, the minimum .J
can be found as follows:

9T _ O (BM wid; /M w; + (S 1))
(“)ri (97”2'
w; 8dz
TS on
=0. (8)

Given (1) and (2), (8) is turned to

1
A-oM AR W; a; bi
n= (o = (== ©)

where a; = c¢;k; and b; = also reflect the image content for

i+l +1
each CTU. Moreover, w; = w; /(X w;) represents the visual
importance for each CTU. Note that with our pre-compressing
process, ¢; and k; can be obtained in advance. Thus, a; and b;
are available before encoding the image. Once A is known, 7;
can be estimated using (9) for achieving the minimum .J.

Meanwhile, there also exists a constraint on bit-rate, which is
formulated as

(10)

M
E ri = R
i=1

According to (9) and (10), we need to find the “proper” A and
bit allocation r; to satisfy the following equation:

27322(“%)}” r

i=1

(11)

After solving (11) to find the “proper” A, the target bits can be
assigned to each CTU with the maximum SWPSNR.

Unfortunately, since a; and b; vary across different CTUs,
(11) cannot be solved by a closed-form solution. Next, the RTE
method is proposed to provide a closed-form solution.

C. RTE Method for Solving the Optimization Formulation

b

For solving (11), we assume that 7; (1) = (@;a;)", where

r; and X are the estimated r; and A, respectively. Then, (11) can

be rewritten as
b;
Zrl = Z (wlal) Zrl <> —R (12

i=1

From (12), we can see that once a— A, there exists 7; — r;.
As such, the optimization formulation of (11) can be solved in
our approach. However, we do not know A at the beginning.
Meanwhile, A of (12) is also unknown because it is intractable
to find the closed-form solution to (11). Therefore, a chicken-
and-egg dilemma exists between A and A. To solve this dilemma,
a possible 4 is initially set. In our RTE method, the picture A
(denoted as A;.) is chosen as the initial value of A for quick
convergence. It is calculated by the R-A model at the picture
level [52], [53]

f)I
)"pic = Qpic (%) ] (13)
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where ;. and 3,;. are the fitted constants (c;. = 6.7542 and
Bpic = 1.7860 in HM 16.0); s, represents the SATD for the
current picture. Recall that R denotes the target bits allocated to
the currently encoded picture.

In the following, the RTE method is proposed to iteratively
update X for making ”— A

Specifically, we preliminarily apply Taylor expansion on
(2)P of (12), and then we discard the biquadratic and higher-
order terms. The process can be formulated as follows:

Here, we use A to denote the approximation solution to (14)
after discarding the biquadratic and higher-order terms. Conse-
quently, (12) can be approximated to be a cubic equation with
variable In A

(%) (n2)?  (In2)* .
R= Z“ b + o b2 + o b
— —Zr, ) In’ A+Zr, Zln)\)ln)\

A B

M b
= F(BnA + b + ‘ln ) Inx

i=1

C
M SO~ R = B
+;ﬁ;(1+bilnk+51112)»—1—%1113)\).

5)

D

By applying the Shengjin formula [65], this cubic equation is
evaluated to obtain the solution of A as

~ B (Y1 + Y7y —F +VF?—4F

)L:eﬁ( ;A \/7)7}/1,2:BE—|—3A( - G
(16)

where FE = B?>-3AC, F=BC-9A(D-R), and

G=C?>-3B(D—-R). Since A=F?—-4FEG>0 in
practical encoding, (16) has only one real solution [65]. Thus,
the value of A is unique for optimizing bit allocation. After
further removing the cubic-order term, (14) is turned to be a
quadratic equation. We found that such a quadratic equation
may have no real solution or two solutions. Meanwhile, using
only one term may lead to large approximation error and
slow convergence speed, whilst keeping more than four terms
probably makes the polynomial equations on In A unsolvable.
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TABLE I
RTE METHOD FOR SOLVING (12)

—  Input: a;, b;, w; for each encoding CTUs and target bits R.
—  Output: reasonable bit allocation ; for each CTU on maximizing
SWPSNR.

Initialize % to be Apic-

While % does not meet the convergence criterion
1 Calculate A, B, C, and D of (15) with iR
2 Obtain % estimated by (16).

3 Update % with the obtained 7.
End

Save the final A.
Apply it to bit allocation 7; with (9)
Return 7; for each CTU.

Therefore, discarding the biquadratic and higher-order terms of
the Taylor expansion is the best choice for our approach.

However, due to the truncation of high-order terms in the
Taylor expansion, A estimated by (16) may not be an accurate
solution to (12). Fortunately, as proven in Lemma 1, A is more
accurate® than A when A < Ao

Lemma 1: Consider A > A > 0,b; > 0,and R > 0 for (12).
When the solution of A to (12) is , the following inequality
holds for A

A=A <|h =2l (17)

Proof: Please refer to the supporting document at
https://github.com/RenYun2016/TMM2016.

As shown in Lemma 1, although both A and A may be inac-
curate for estimating A in (11), A, obtained through (12)—(16),
is closer to A than A. Therefore, we can iterate the Taylor expan-
sion by using % as A to the next iteration, which is the core of
our RTE method. In addition, if 2 > A > 0 at the first iteration,
then its output A is smaller than A, as pointed out by Lemma 2.

Lemma 2: Consider A > 0,1 > 0,b; > 0, A # Mand R > 0
for (12). If 7 is the solution of A to (12), then the following holds:

n< A (18)

Proof: Please refer to the supporting document at
https://github.com/RenYun2016/TMM2016.

Given Lemma 2, for the subsequent iterations of the RTE
method, 0 < X < A of Lemma 1 can be satisfied since the value
of A has been replaced by that of . In this way, the closed-form
solution X can be obtained by iteratively estimating .

Our RTE method is summarized in Table 1. For each iteration,
the convergence criterion is set according to the approximation
error, £, < 10710, where E, = |SM,7; — R|/R. As analyzed
in Section IV, the approximation error of our RTE method is
able to converge to 1071Y, generally with no more than three
iterations. In other words, after three or fewer iteratigns, the
RTE method is able to reduce the difference between A and A
to an extremely small range, meeting the convergence criterion.
Thus, A can be output as the closed-form solution to (12) (as
well as (11)). Finally, we replace A by X in (9) to allocate the
target bits to each CTU such that SWPSNR can be maximized.

31t is obvious that 0 < b; = ﬁ < land R > 0 in HEVC encoding.
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Fig. 2.

The physical explanation for the fast convergence speed of
our RTE method is as follows. Obviously, the approximation
error for each iteration of the RTE method is largely related

to lnz in (lnf,)" b? of (14). To reduce the value of hrlZ for

small appr0x1mat10n error, our RTE method utilizes a more
accurate solution A after each iteration to replace . for the

ln

next iteration, making n, b” decrease sharply. Therefore,
such a replacement not only provides a more accurate input
for the next iteration but also greatly reduces the values of
the discarded terms and the approximation error. In this way,
the convergence speed can be accelerated along with iterations.
Moreover, keeping three terms for the Taylor expansion rather
than other terms is solvable and also contributes to the fast
convergence speed of our RTE method.

D. Bit Re-allocation for Maintaining Optimization

Aswe discussed in Section III-C, bits are reasonably allocated
in our approach to minimize perceptual distortion. However, in
practical encoding, a slight difference between the target and
actual bits may exist for each CTU. This difference may degrade
RC accuracy. To overcome this, we develop a bit re-allocation
process to accurately control bit-rates, meanwhile maintaining
the optimization for perceptual distortion.

Specifically, for compensating the bit-rate error after encod-
ing the ¢-th CTU, the target bits for the incoming K CTUs
(denoted as T; 1 ;+ i ) are updated by

j=i+K j=M
1+1 i+ K = § T] + T § rj (19)
j=i+1 j=i+1

bit—rate error

In (19), T is the remaining bits for encoding remaining CTUs,
and 7; represents the target bits for the j-th CTU by our RTE
method. Recall that M denotes the total number of CTUs. Obvi-
ously, as seen from (19), the bit error is compensated during en-
coding the next i’ CTUs. Here, the RTE method of Section III-C
is applied to re-allocate T; | ;4 i to the next /' CTUs. Note that
we follow [52] and [53] to set i = 4, which means that bits are
re-assigned in the next four CTUs. Moreover, note that due to
the fast convergence speed of our RTE method, the complexity
increases little for the bit re-allocation process.

Finally, we summarize our HEVC-based image compres-
sion approach in Fig. 2. Specifically, we first transplant RC to
HEVC-MSP with a simplified pre-compression process, and the

Actual bits

Procedure of our approach on minimizing perceptual distortion.

saliency values are detected for the input image. Then, our RTE
method obtains the target bits of each CTU, which can minimize
perceptual distortion at a given bit-rate. Next, the QP value of
each CTU is estimated using the R-A model and QP fitting. Note
that the bits need to be re-allocated in the following CTUs to
bridge the gap between the target and actual bits. In addition,
as to be verified in Section IV, little computational complexity
cost is introduced in our RTE method, further highlighting the
efficiency of our approach.

IV. COMPUTATIONAL COMPLEXITY ANALYSIS

In this section, we primarily focus on the computational com-
plexity of our approach. Since our approach adopts the RTE
method to optimize perceptual distortion, the convergence speed
of the RTE method is first discussed from both theoretical and
numerical perspectives. In the numerical analysis, we also pro-
vide the practical computational time of our approach.

A. Theoretical Analysis

For the theoretical analysis, we investigate the difference be-
tween A and A alongside the iterations of our RTE method. Here,
we define AL as the difference between A and A as
r—2

T
If |AL| — 0, then it indicates that our RTE method is stably
convergent. Therefore, we take into consideration AX along
with each iteration in our RTE method to analyze its convergence
speed.

In practice, k; (> 0) of (9) varies in a small range when
encoding images using HEVC-MSP. Therefore, we assume that
b; (0 < b = oy +1 < 1in (9)) remains constant for simplicity.
Based on this assumption, the convergence speed of our RTE
method can be determined with Lemma 3.

Lemma 3: Considerthat& >0, >0,A>0,R > 0,and Vs,
b; =1 € (0,1). Recall that % is the estimated A of (12) before
each iteration of our RTE method and that A is the solution of A to
(12) after each iteration of our RTE method. After each iteration
in our RTE method, A is replaced by . Then, there exists |AA|
— 0 along with iterations. Specifically, when —0.9 < Ax < 0

A\ = (20

|AA] < 0.04 (2D

exists after two iterations.
Proof: Please refer to the supporting document
https://github.com/RenYun2016/TMM2016.

at
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Fig.3. E, versus iteration times of the RTE method at various bit-rates. Note

that for (a), the black dots represent AA for each CTU in the Lena image. For
(b), all 38 images (from our test set of Section V) were used to calculate the
approximation error F, and the corresponding standard deviation along with
the increasing iterations. (a) Lena 512 x 512. (b) All images of our test set.

As proven in Lemma 2, A < A of our RTE method holds
after the first iteration, which means that Ax € (—1,0). More-
over, we empirically found that AX for all CTUs is restricted to
(—0.9,0) after the firstiteration in HEVC-MSP. Then, Lemma 3
indicates that | A} | can be reduced to below 0.04 in at most three
iterations, quickly approaching 0. This verifies the fast conver-
gence speed of the RTE method in terms of AXA. Next, we
numerically evaluate the convergence speed of our RTE method
in terms of F,.

B. Numerical Analysis

In this section, the numerical analysis of the convergence
speed of our approach is presented. Specifically, we utilize
the approximation error F, to verify the convergence speed
of the RTE method. Recall that E, = |2, 7, — R|/R (defined
in Section III-C). Fig. 3 shows E, versus RTE iterations when
applying our approach to image compression in the HM 16.0
platform. As shown in this figure, with no more than three it-
erations, E, reaches below 1079, thereby reflecting the fast
convergence speed of our RTE method. This result is in accor-
dance with the theoretical analysis of Section IV-A.

We further investigate the computational time for each itera-
tion of the RTE method. As shown in Table I, the computational
time for each iteration is independent of the image content in our
RTE method. Therefore, one image was randomly chosen from
our test set, and the average time of one iteration of our RTE
method was then recorded. The computer used for the test has an
Intel Core i7-4770 CPU at 3.4 GHz and 16 GB of RAM. From
this test, we found out that one iteration of our RTE method
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only consumes approximately 0.0015 ms for each CTU. Since
it takes at most three iterations to acquire the closed-form so-
lution, the computational time for our RTE method is less than
0.005 ms.

Our approach consists of two parts: bit allocation and
re-allocation with the RTE method. For bit allocation, three
iterations are sufficient for encoding one image, thus consuming
at most 0.005 ms. For bit re-allocation, the computational
time depends on the number of CTUs of the image since each
CTU requires at most three iterations to obtain the re-allocated
bits. For a 1600 x 1280 image, the computational time of our
approach is approximately 2.5 ms because it includes 500
CTUs. This implies the negligible computational complexity
burden of our approach.

V. EXPERIMENTAL RESULTS

In this section, experimental results are presented to validate
the performance of our approach. Specifically, the test and pa-
rameter settings for image compression are first presented in
Section V-A. Then, the rate-distortion performance is evaluated
in Section V-B. In Section V-C, the Bjontegaard distortion-rate
(BD-rate) savings are provided to show how many bits can be
saved in our approach for image compression. Then, the accu-
racy of bit-rate control is discussed in Section V-D. Finally, the
generalization of our approach is verified in Section V-E.

A. Test and Parameter Settings

To evaluate the performance of our approach, we estab-
lished a test set consisting of 38 images at different resolutions.
Table IT summarizes all 38 of these images in our test set. Among
these images, 10 images have faces, and the other images have
no faces. Saliency for these images is first detected in our ap-
proach. Note that the face and non-face images are automatically
recognized by using the face detector in [23]. Specifically, the
face detector is first utilized to determine whether there is any
face in the image. For the images with detected faces, we use
[23] to predict saliency, and then we calculate SWPSNR as
the optimization objective in our approach. Otherwise, [24] is
utilized to predict saliency for SWPSNR for optimization.

Since the detected salient regions may deviate from the re-
gions attracting human attention, in our experiments, we mea-
sure the EWPSNR of compressed images, which adopts the
ground-truth eye fixations to weight MSE. The previous work
of [22] has also verified that the EWPSNR is highly correlated
with subjective quality. To obtain the ground-truth eye fixations*
for measuring EWPSNR, 21 subjects (12 males and 9 females)
with either corrected or uncorrected normal eyesight partici-
pated in our eye-tracking experiments by viewing all images of
our test set. Note that only one among the 21 subjects was an
expert who worked in the research field of saliency detection.
The other 20 subjects did not have any background in saliency
detection, and they were naive to the purpose of the eye-tracking

4The ground-truth eye fixations, together with their correspond-
ing images, can be obtained from our website at https://github.com/
RenYun2016/TMM2016.
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TABLE I
DETAILS OF OUR TEST SET
. - $STTTSYeLeesEIyorossgaayILeSLEY
mge | Fo 3 P, PPEEIIIIIIIIIiiiiiiiiiiiiii: oo
£S5 &8 STEFfadadfdad 8888888888888 scesgss & 3§
From [23] [ JPEG XR test set [ Kodak test set [ Standard images
Face V oV V VY X X X X X X XX X X X X X X X X X X /X X X X X X /X X x /X vV
Resolution 1920x1080 | 1280 % 1600 I 768512 | 512%768 I 512x512
TABLE III
EWPSNR AND SWPSNR IMPROVEMENT OF OUR APPROACH OVER NON-RC AND RC HEVC-MSP APPROACHES, FOR THE 38 IMAGES
Face Non-face
SWPSNR improvement EWPSNR improvement SWPSNR improvement EWPSNR improvement
Avg. +Std.  Max./Min.  Avg. + Std.  Max./Min.  Avg. £Std. Max./Min.  Avg. + Std.  Max./Min.
QP =47 OverNon-RC 1.10 +£047 2.05/0.44 1.55 +0.79 2.93/0.39 0.44 +0.19 0.95/0.14 0.71 +£0.43 1.91/0.04
Over RC 1.19 +0.52 2.21/0.65 1.67 £ 0.86 2.87/0.71 0.90 £+ 0.40 1.84/0.25 1.15 4+ 0.55 2.51/0.24
QP =42 OverNon-RC 1.21 +£043 1.83/0.39 1.71 £ 0.79 2.84/0.47 0.58 +0.23 1.17/0.18 0.92 +0.42 2.13/0.15
Over RC 1.43 +0.55 2.43/0.55 1.99 + 0.80 2.98/1.07 0.97 +0.45 1.74/0.31 1.34 +0.62 2.74/0.23
QP =37 OverNon-RC 1.29 +0.38 1.95/0.72 1.92 +0.93 3.64/0.67 0.71 +0.29 1.23/0.25 1.16 £ 0.46 2.21/0.31
Over RC 1.42 +0.50 2.40/0.90 2.16 £0.92 3.56/0.80 1.00 + 0.50 1.96/0.25 1.47 £ 0.65 2.83/0.51
QP =32 OverNon-RC 1.51 £0.51 2.48/0.67 2.23 £ 1.08 4.20/1.04 0.81 +0.34 1.32/0.24 1.35 £ 0.54 2.40/0.27
Over RC 1.57 +0.52 2.49/0.95 238 £ 1.10 4.18/0.91 0.99 + 0.50 1.99/0.21 1.56 + 0.68 2.90/0.36
QP =127 OverNon-RC 1.90 +0.73 3.26/0.79 2.85 +1.37 5.41/1.66 0.86 + 0.36 1.48/0.33 1.49 £+ 0.61 2.66/0.10
Over RC 2.01 4+ 0.65 3.14/1.01 298 £ 1.25 5.16/1.73 0.97 +0.47 2.13/0.36 1.58 £0.73 2.77/0.23
QP =122 OverNon-RC 238+092 4.14/1.26 3.60 £+ 1.21 5.75/2.17 0.92 4+ 0.38 1.54/0.40 1.62 + 0.69 3.07/0.12
Over RC 242 +1.05 4.14/1.17 3.65 + 1.21 6.30/2.07 1.15 +0.51 2.14/0.39 1.85 +0.82 3.60/0.08
Overall Over Non-RC  1.56 +£0.73 4.14/0.39 2.31+1.23 5.75/0.39 0.72 +0.34 1.54/0.14 1.21 £ 0.61 3.07/0.04
Over RC 1.67 £ 0.76  4.14/0.55 247 +1.20 6.30/0.71 1.00 + 0.47 2.14/0.21 1.49 +0.70 3.60/0.08

experiment. Then, a Tobii TX60 eye tracker, integrated with a
monitor of a 23-inch LCD display, was used to record the eye
movement at a sample rate of 60 Hz. All subjects were seated on
an adjustable chair at a distance of 60 cm from the monitor of the
eye tracker. Before the experiment, the subjects were instructed
to perform the 9-point calibration for the eye tracker. During the
experiment, each image was presented in a random order and
last for 4 seconds, followed by a 2-second black image for a drift
correction. All subjects were asked to freely view each image.
Overall, 9756 fixations were collected for our 38 test images.

In our experiments, our approach was implemented in HM
16.0 with the MSP configuration profile. Then, the non-RC
HEVC-MSP [13], also on the HM 16.0 platform, was utilized for
comparison. The RC HEVC-MSP was also compared, the RC of
which is mainly based on [52]. Note that both our approach and
the RC HEVC-MSP have integrated RC to specify the bit-rates,
and the other parameters in the configuration profile were set by
default, the same as those of the non-RC HEVC-MSP. To obtain
the target bit-rates, we encoded each image with the non-RC
HEVC-MSP at 6 fixed QPs, the values of which are 22, 27, 32,
37, 42, and 47. Then, the target bit-rates of our approach and
the RC HEVC-MSP were set to be the actual bits obtained by
the non-RC HEVC-MSP. As such, high ranges of visual quality
for compressed images can be ensured.

B. Assessment on Rate-Distortion Performance

Now, we assess the rate-distortion performance of our
approach and of the conventional non-RC and RC HEVC-MSP

approaches. The rate-distortion curves for face and non-face
images are first plotted and analyzed. Subsequently, we present
the results of image quality improvement of our approach
at different QPs, which are measured by the EWPSNR and
SWPSNR increase of our approach over the conventional ap-
proaches. Next, we evaluate how ROI detection accuracy affects
the quality improvement in our approach. Finally, the subjective
quality is evaluated by calculating the difference mean opinion
scores (DMOS), as well as showing several compressed images.
Rate-distortion curve: Figs. 4(a)-4(j) and Fig. 1 of the sup-
porting document show the EWPSNR and PSNR versus bit-
rates’ for all 10 face images of our test set. As shown in these
figures, our approach is able to significantly improve the EWP-
SNR of compressed images, despite the slight decrease in PSNR.
Consequently, subjective quality can be dramatically improved
by our approach. Moreover, Figs. 4(k)—4(r) and Fig. 1 of the
supporting document show the curves of EWPSNR and PSNR
versus bit-rates for 8 non-face images randomly selected from
our test set. These figures show that our approach is also capable
of achieving superior subjective quality for non-face images.
EWPSNR assessment: To quantify the rate-distortion im-
provement of our approach, we tabulate in Table III the
EWPSNR enhancement of our approach over conventional ap-
proaches. We have the following observations with regard to
the EWPSNR enhancement. For face images, our approach
achieves significant EWPSNR improvement, as the increase

SQur supporting documents are available online at https://github.com/
RenYun2016/TMM2016.
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Fig. 4. EWPSNR and PSNR versus bit-rates for our approach and the non-RC HEVC-MSP.

over the non-RC HEVC-MSP and RC HEVC-MSP is
231 £ 1.23 dB and 247 + 1.20 dB, respectively. In ad-
dition, the maximum increase of EWPSNR is 5.75 dB and
6.30 dB in our approach over the non-RC and RC HEVC-
MSP approaches, respectively, whereas the minimum increase is
0.39dB and 0.71 dB for these two approaches, respectively. For
non-face images, the EWPSNR improvement of our approach
reaches 1.49 dB on average compared with the RC HEVC-MSP
approach, with a standard deviation of 0.70 dB. Compared to

the non-RC HEVC-MSP approach, our approach enhances the
EWPSNR by 1.21 dB on average, and the standard deviation of
this enhancement is 0.61 dB. In a word, our approach dramati-
cally improves the EWPSNR over the conventional approaches
for both face and non-face images.

SWPSNR assessment: Since the optimization objective of
our approach is to maximize SWPSNR, we further report in
Table III the SWPSNR improvement of our approach over the
conventional approaches. As shown in Table III, our approach
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TABLE IV
EWPSNR DIFFERENCE (DB) OF OUR APPROACH AFTER REPLACING
SWPSNR WIiTH EWPSNR AS THE OPTIMIZATION OBJECTIVE

QP 47 42 37 32 27 22 Overall
Face 072 077 0.67 066 057 045 0.64
Non-face 0.70 0.77 084 092 098 1.01 0.87

also achieves significant improvements in SWPSNR at different
QPs. Specifically, compared with RC HEVC-MSP, our approach
achieves an SWPSNR improvement over all images, with up to
a 4.14 dB SWPSNR enhancement for face images and up to a
2.14 dB enhancement for non-face images. On average, for non-
face images, our approach increases the SWPSNR by 0.72 dB
and 1.00 dB over non-RC and RC HEVC-MSP, respectively. For
face images, a more average SWPSNR gain is obtained by our
approach, which has 1.56 dB and 1.67 dB increase over non-RC
and RC HEVC-MSP.

Influence of ROI detection accuracy: Now, we investigate
how the ROI detection accuracy influences the results of quality
improvement in our approach. To this end, we further implement
our approach using EWPSNR (instead of SWPSNR) as the
optimization objective, which means that ROI detection is of
100% accuracy when compressing images using our approach.
Specifically, Table IV shows the EWPSNR difference averaged
over all 38 test images when replacing SWPSNR with EWPSNR
as the optimization objective in our approach. This reflects the
influence of ROI detection accuracy on the quality improvement
of our approach. We can see from Table IV that the EWPSNR
of our approach can be enhanced by 0.64 dB and 0.87 dB on
average for face and non-face images after replacing SWPSNR
by EWPSNR as the optimization objective. Thus, visual quality
can be further improved in our approach when ROI detection is
more accurate.

Subjective quality evaluation: Next, we compare our ap-
proach with the non-RC HEVC-MSP using DMOS. Note that
the DMOS of the RC HEVC-MSP is not evaluated in our test
because it produces even worse visual quality than the non-RC
HEVC-MSP. The DMOS test was conducted by the means of
single stimulus continuous quality score (SSCQS), which is pro-
cessed by Rec. ITU-R BT.500 to rate the subjective quality. The
total number of subjects involved in the test is 12, consisting of 6
males and 6 females. Here, a Sony BRAVIA XDV-W600, with a
55-inch LCD, was utilized for displaying the images. The view-
ing distance was set to be four times the image height for rational
evaluation. During the experiment, each image was displayed
for 4 seconds, and the order in which the images were displayed
was random. Then, the subjects were asked to rate after each
image was displayed, i.e., excellent (100-81), good (80-61), fair
(60-41), poor (40-21), and bad (21-0). Finally, DMOS was com-
puted to qualify the difference in subjective quality between the
compressed and uncompressed images.

The DMOS results for the face images are tabulated in
Table V. Smaller values of DMOS indicate better subjective
quality. As shown in Table V, our approach has considerably
better subjective quality than the non-RC HEVC-MSP at all

bit-rates. Note that for all images, the DMOS values of our ap-
proach at QP = 47 are almost equal to those of the non-RC
HEVC-MSP at QP = 42, which approximately doubles the bit-
rates of QP = 47. This indicates that a bit-rate reduction of
nearly half can be achieved in our approach. This result is also
in accordance with the ~ 40% BD-rate saving of our approach
(to be discussed in Section V-C). We further show in Fig. 5 Lena
and K odim18 compressed by our and the other two approaches.
Obviously, our approach, which incorporates the saliency detec-
tion method of [23], is able to significantly meliorate the visual
quality over face regions (that humans mainly focus on). Con-
sequently, our approach yields significantly better subjective
quality than the non-RC and RC HEVC-MSP for face images.

In addition, the DMOS results of those 8 non-face images are
listed in Table VI. Again, our approach is considerably superior
to the non-RC HEVC-MSP approach at all bit-rates. Moreover,
Fig. 6 shows two images K odim06 and K odim07 compressed
by our approach and by the other two approaches. From this
figure, we can see that our approach improves the subjective
quality of compressed images, as the fixated regions are with
higher quality.

C. Assessment of BD-Rate Savings

It is interesting to investigate how many bits can be saved
when applying our approach to image compression. In our
experiments, BD-rates were calculated for this investigation. To
calculate the BD-rates, the 6 different bit-rates, each of which
corresponds to one fixed QP (among QP = 22, 27, 32, 37, 42,
and 47), were all utilized. Since the above section has shown that
the EWPSNR is more effective than the PSNR for evaluating
subjective quality, the EWPSNRs of each image at 6 bit-rates
were measured as the distortion metric. Given the bit-rates and
their corresponding EWPSNRs, the BD rate of each image was
achieved. Then, the BD-rate savings of our approach can be
obtained, with the non-RC or RC HEVC-MSP as an anchor.

Table VII reports the BD-rate savings of our approach av-
eraged over all 38 images of our test set. As shown in this
table, a 24.3% BD-rate saving is achieved in our approach for
all images over the non-RC HEVC-MSP. The BD-rate saving
of our approach increases to 27.7%, when compared with the
RC HEVC-MSP. In Table VII, the results of BD-rate savings
for face and non-face images are also listed. Accordingly, we
can see that our approach is able to save 39.1% and 42.5%
BD-rates over non-RC and RC HEVC-MSP, respectively. Note
that compared with non-face images, face images witness more
gains in our approach. It is probably due to the fact that human
faces are more consistent than other objects in attracting hu-
man attention. Meanwhile, in our approach, the saliency of face
images can be better predicted than that of non-face images.
Consequently, the ROI-based compression of face images by
our approach is more effective in satisfying human perception,
resulting in larger improvements in EWPSNR, BD-rate savings
and DMOS scores.

As the cost of BD-rate savings, the computational time of
our approach increases, which is also reported in Table VII.
Specifically, our approach increases the encoding time by ap-
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TABLE V
DMOS RESULTS FOR FACE IMAGES BETWEEN OUR APPROACH AND THE NON-RC HEVC-MSP

Tourist ~ Golf  Travel Doctor Woman Kodiml5 Kodim04 Kodiml8  Tiffany Lena

QP =47  Bits (bpp) 0.04 0.02 0.04 0.02 0.04 0.03 0.03 0.05 0.03 0.05
Our 57.2 58.0 56.9 56.5 61.4 64.5 68.9 55.0 59.2 57.5

Non-RC 74.3 69.6 69.1 63.9 78.4 70.1 73.9 66.3 67.6 63.9

QP =42  Bits (bpp) 0.08 0.03 0.10 0.03 0.13 0.06 0.06 0.16 0.06 0.09
Our 45.0 50.0 42.7 47.8 43.9 50.7 53.6 43.1 43.1 479

Non-RC 585 56.3 53.7 52.1 61.3 61.2 61.9 56.9 54.1 55.5

QP =32  Bits (bpp) 0.27 0.08 0.36 0.10 0.56 0.29 0.31 0.76 0.26 0.28
Our 28.1 35.2 26.1 34.1 28.9 30.0 30.0 20.8 27.1 36.9

Non-RC 36.4 42.0 34.0 423 36.0 38.7 38.8 28.5 30.2 44.0

Face

Face Face Face

(b) (d)

Fig. 5. Subjective quality of Lena and K odim18 images at both 0.05 bpp (QP = 47) for three approaches. (a) Human fixations. (b) Non-RC HEVC-MSP. (c)
RC HEVC-MSP. (d) Our approach.

TABLE VI
DMOS RESULTS FOR NON-FACE IMAGES BETWEEN OUR APPROACH AND THE NON-RC HEVC-MSP

Bike  Picturel4 Kodim02 Kodim06 Kodim07 Kodiml0 Kodiml6  Kodim24

QP =47 Bits (bpp)  0.07 0.04 0.02 0.04 0.05 0.03 0.02 0.06
Our 53.3 59.6 65.5 62.0 56.8 63.0 71.1 67.1

Non-RC 572 63.1 69.9 72.1 67.0 68.1 79.2 70.2

QP =42 Bits(bpp) 0.14 0.10 0.04 0.12 0.10 0.08 0.06 0.17
Our 36.8 50.3 50.0 52.7 50.1 54.5 56.2 554

Non-RC 38.9 54.2 534 57.6 56.3 58.7 62.1 59.3

QP =32 Bits(bpp) 0.49 0.40 0.26 0.60 0.33 0.28 0.36 0.71
Our 30.3 31.7 33.5 34.8 36.3 34.7 35.6 32.6

Non-RC 30.8 32.6 352 35.6 38.0 379 40.8 33.8

proximately 8% and 5% over non-RC and RC HEVC-MSP, saliency detection, which is the first step in our approach, con-
respectively. The computational time of our approach sumes ~2% extra time.

mainly comes from three parts, i.e., saliency detection, pre-
compression, and RTE optimization. As discussed above
(Sections III-A and I'V-B), our pre-compression process slightly
increases the computational cost by ~3%, whilst our RTE The control accuracy is another factor in evaluating the per-
method consumes negligible computational time. Besides, formance of RC-related image compression. Here, we compare

D. Assessment of Control Accuracy
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Fig. 6.
HEVC-MSP. (c) RC HEVC-MSP. (d) Our approach.

TABLE VII
BD-RATE SAVINGS AND ENCODING TIME RATIO OF OUR
APPROACH OVER NON-RC AND RC HEVC-MSP

Over non-RC HEVC-MSP  Over RC HEVC-MSP

Face images 39.18% 42.50%
Non-face images 18.98% 22.43%
All generic Images 24.30% 27.72%
Encoding time 108.3 % 105.2 %

the control accuracy of our approach and of the RC HEVC-MSP
over all images in our test set. Since the bit re-allocation pro-
cess is developed in our approach to bridge the gap between the
target and actual bits, the control accuracy of our approach with
and without the bit re-allocation process is also compared. In the
following, the control accuracy is evaluated from two aspects:
CTU level and image level.

For the evaluation of control accuracy at the CTU level, we
compute the bit-rate error of each CTU, i.e., the absolute dif-
ference between target and actual bits assigned to one CTU.
Then, Fig. 7 demonstrates the heat maps of bit-rate errors at
the CTU level averaged over all images with the same reso-
lutions from the Kodak and JPEG XR sets. The heat maps of
our approach and of the RC HEVC-MSP are both shown in
Fig. 7. It can easily be observed that our approach ensures a
considerably smaller bit-rate error for almost all CTUs when
compared with the RC HEVC-MSP. Note that the accurate rate
control at the CTU level is meaningful because it ensures that
the bit consumption follows the amount that it is allocated, sat-
isfying the subjective R-D optimization formulation of (6). As
a result, the bits in our approach can be accurately assigned to
ROIs with optimal subjective quality. In contrast, the conven-
tional RC HEVC-MSP normally accumulates redundant bits at
the end of image bitstreams, resulting in poor performance in
R-D optimization.

For the evaluation of control accuracy at the image level, the
bit-rate error, defined as the absolute difference between the tar-
getand actual bits of the compressed image, is worked out. Fig. 8
shows the bit-rate errors of all 38 images from our test set in
terms of maximum, minimum, average and standard deviation

Subjective quality of Kodim06 and Kodim07 image at 0.04 and 0.05 bpp (QP = 47) for three approaches. (a) Human fixations. (b) Non-RC

Our RC HEVC-MSP
- 1
1 E 1
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5 5
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7 7 Z 0.2
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(c)
Fig. 7. Heat maps of bit-rate errors at CTU level for our approach and RC

HEVC-MSP. Each block in this figure indicates the bit-rate error of one CTU.
Note that the bit-rate errors are obtained via averaging all images compressed
by our and the RC HEVC MSP at six different bit-rates (corresponding to QP
=22,27,32,37,42,47). (a) Kodak 768 x 512. (b) Kodak 512 x 768. (c) JPEG
XR 1280 x 1600.

values. As shown in this figure, our approach achieves smaller
bit-rate error than the RC HEVC-MSP from the aspects of mean,
standard deviation, maximum and minimum values. This veri-
fies the effectiveness of our approach in RC and also makes our
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and standard deviation values over all images are also provided.

o AvgdStd: 1.43% +1.24%

Avg+Sid: 6.91%+4.92%
Max/Min: 17.15% /0.07%

Max/Min: 4.98% / 0.03% _

|
44,,4,,4,;-@,4-4444—4‘4‘+¢4 o
0’ %

5
“, %, %, 4, ", 0, ", %, ", %, %, %,

%?@%%) Uy %5, 2, g, g, gy g, ey 0, 4;‘1, %, 0;‘, %@%@, o),)z,&@,p

Bit-rate errors of each single image for our approach with and without bit re-allocation, as well as the RC HEVC-MSP. The maximum, minimum, average,

TABLE VIII
PERFORMANCE IMPROVEMENT OF OUR APPROACH OVER NON-RC AND RC HEVC-MSP
APPROACHES, FOR 112 TEST IMAGES BELONGING TO DIFFERENT CATEGORIES

QP  SWPSNR improvement (dB) Face Non-face Graphics Aerial All
32 Over Non-RC Avg. +Std. 1.14+0.03  0.54 £0.40 0.51 +£0.28 0.35 £ 0.30 0.58 +0.50
Max./Min. 2.82/0.11 1.60/0.02 0.81/0.14 1.04/0.00 2.82/0.00
Over RC Avg. =Std. 140£0.76  0.73 £0.49 0.65£0.13 0.59 £ 0.61 0.80 £ 0.66
Max./Min. 2.85/0.17 1.80/0.01 0.83/0.53 2.97/0.00 2.97/0.00
All Over Non-RC Avg. +=Std.  1.25+£0.71 0.53 £0.45 0.50 £0.21 0.30 £0.33 0.58 £0.58
Max./Min. 3.30/0.01 3.35/0.00 0.90/0.14 2.28/0.01 3.35/0.00
Over RC Avg. £Std. 1.50£0.84  0.75 +£0.59 0.83 £ 0.68 0.60 £ 0.52 0.84 +0.71
Max./Min. 4.59/0.01 3.13/0.01 2.88/0.06 2.97/0.01 4.59/0.01
Bit-rate error (%) Face Non-face Graphics Aerial Overall
32 RCHEVC-MSP Avg. +£Std. 240+£276 353+09.11 6.43 +9.80 6.93 £9.09 4.78 £ 8.39
Max./Min. 10.9/0.06 53.65/0.01 20.99/0.47 35.07/0.02 53.65/0.01
Our Avg. +Std. 2.72+£2.62 280+£4.15 1.89 £ 1.69 1.63 £3.34 228 £3.51
Max./Min. 12.11/0.36 25.45/0.03 4.42/0.85 20.38/0.06 25.45/0.03
All' RCHEVC-MSP  Avg. £Std. 4.08 551 796+1564 11.96+21.20 124041629 9.12+15.07
Max./Min. 33.61/0.04 98.81/0.00 86.00/0.12 69.12/0.00 98.81/0.00
Our Avg. +Std.  3.37 +£3.63 374 £5.71 2.17 £ 1.85 1.84 £3.03 2.85+4.37
Max./Min. 25.79/0.10 39.32/0.01 7.00/0.31 21.39/0.00 39.32/0.00

approach more practical because the accurate bit allocation of
our approach well meets the bandwidth or storage requirements.
Furthermore, Fig. 8 shows that the bit-rate error significantly in-
creases from 1.43% to 6.91% and also dramatically fluctuates
once bit re-allocation is disabled in our approach. This indicates
the effectiveness of the bit re-allocation process in our approach.
Note that because a simple re-allocation process is also adopted
in the RC HEVC-MSP, the bit-rate errors of RC HEVC-MSP
are also much smaller than those of our approach without bit
re-allocation.

In summary, our approach has more accurate RC at both the
CTU and image levels compared to the RC HEVC-MSP.

E. Generalization Test

To verify the generalization of our approach, we further com-
pare our approach and conventional approaches on 112 raw
images® from 3 test sets grouped into 4 categories, i.e., 22 face

%The 112 raw images with their detailed information are also available online
at https://github.com/RenYun2016/TMM2016.

images, 41 non-face images, 4 graphics images, and 45 aerial im-
ages. The resolutions of these images range from 256 x 256 to
7216 x 5408. The experimental results on these 112 images are
reported in Table VIII, including the mean, standard deviation,
maximum and minimum values of SWPSNR? as well as bit-
rate errors. Due to space limitation, this table only shows the
results of compression at QP = 32 and the overall results of
compression at QP = 22, 27,32, 37, 42 and 47.

As shown in Table VIII, our approach still dramati-
cally outperforms the conventional approaches across different
categories of images in terms of both quality and RC error.
Specifically, the SWPSNR improvement on the newly added
112 images is similar to that on the above 38 test images. In par-
ticular, when compressing face images at 6 QPs, our approach
has 1.50 4+ 0.84 dB SWPSNR increase over the conventional
RC HEVC-MSP. Moreover, the average increase in SWPSNR
at 6 QPs is 0.75 dB for non-face images, 0.83 dB for graphic im-
ages, and 0.60 dB for aerial images. For control accuracy, the av-
erage bit-rate errors of our approach stabilize at 1.84%—3.74%
across different categories, while the conventional RC approach
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in HEVC fluctuates from 4.08% to 12.40% on average with an
even larger standard deviation. This result validates that our ap-
proach can achieve a stable and accurate RC, compared to RC
HEVC-MSP. Finally, the generalization of our approach can be
validated.

VI. CONCLUSION

In this paper, we have proposed a novel HEVC-based image
compression approach that minimizes the perceptual distortion
on the latest HEVC-MSP platform. Benefiting from the state-
of-the-art saliency detection, we developed a formulation to
minimize perceptual distortion, which maintains properly high
quality at regions that attract attention. Then, the RTE method
was proposed as a closed-form solution to our formulation with
little extra time for minimizing perceptual distortion, followed
by the bit allocation and re-allocation process. Consequently,
our experimental results showed that our approach drastically
outperforms non-RC and RC HEVC-MSP for generic image
compression with a ~1.5 dB EWPSNR improvement and
~30% BD-rate saving at the same subjective quality. For face
images, our approach can achieve even higher gains, with a
~2.3 dB EWPSNR improvement and ~40% BD-rate savings.
These results were also validated by the generalization test on
112 raw images. Moreover, our experimental results showed
that our approach can achieve considerably higher RC accuracy
than the RC HEVC-MSP by reducing the RC error from 2.33%
to 1.43% on average.

There are two possible directions for future work. 1) Our
approach only takes into account the visual attention in improv-
ing the subjective quality of compressed images. In fact, other
factors of the HVS, e.g., JND, may also be integrated into our
approach for perceptual image compression. 2) Our approach
in its present form only concentrates on minimizing perceptual
distortion according to the predicted visual attention of uncom-
pressed images. However, the distribution of visual attention
may be influenced by the distortion of compressed images in re-
verse. A long-term goal of perceptual image compression should
thus include the loop between visual attention and perceptual
distortion over compressed images.
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