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Joint learning of 3D lesion segmentation and
classification for explainable COVID-19 diagnosis

Xiaofei Wang, Lai Jiang, Liu Li, Mai Xu, Xin Deng, Lisong Dai, Xiangyang Xu,
Tianyi Li, Yichen Guo, Zulin Wang, and Pier Luigi Dragotti

Abstract—Given the outbreak of COVID-19 pandemic and the
shortage of medical resource, extensive deep learning models
have been proposed for automatic COVID-19 diagnosis, based
on 3D computed tomography (CT) scans. However, the existing
models independently process the 3D lesion segmentation and
disease classification, ignoring the inherent correlation between
these two tasks. In this paper, we propose a joint deep learning
model of 3D lesion segmentation and classification for diagnosing
COVID-19, called DeepSC-COVID, as the first attempt in this
direction. Specifically, we establish a large-scale CT database
containing 1,805 3D CT scans with fine-grained lesion annotations,
and reveal 4 findings about lesion difference between COVID-
19 and community acquired pneumonia (CAP). Inspired by our
findings, DeepSC-COVID is designed with 3 subnets: a cross-
task feature subnet for feature extraction, a 3D lesion subnet
for lesion segmentation, and a classification subnet for disease
diagnosis. Besides, the task-aware loss is proposed for learning
the task interaction across the 3D lesion and classification subnets.
Different from all existing models for COVID-19 diagnosis, our
model is interpretable with fine-grained 3D lesion distribution.
Finally, extensive experimental results show that the joint learning
framework in our model significantly improves the performance of
3D lesion segmentation and disease classification in both efficiency
and efficacy.

Index Terms—Multi-task Learning, CT scans, COVID-19, Deep
Neural Networks.

I. INTRODUCTION

After being first identified in December 2019, COVID-19
has emerged as a pandemic of global health concern, caus-
ing unprecedented social and economic disruption [44], [42].
According to the WHO report [54], as of March 29, 2021,
there were a total of 126,890,643 infected patients, 2,778,619
of whom died. The worldwide outbreak of COVID-19 has
placed enormous pressure on healthcare systems and led to an
extreme shortage of medical resources [41]. A feasible way
to control the COVID-19 pandemic is to identify and isolate
the infected cases [19], which requires an effective screening
method with high sensitivity to detect infected people and their
close contacts. Real-time reverse transcription polymerase chain
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reaction (RT-PCR) [43] is a common method for COVID-19
detection; however, it suffers from a high false negative rate
[1], [14] in the early stages of the disease. Recently, the antigen
test has been developed for the rapid diagnosis of COVID-
19; however, it still suffers from relatively low specificity and
sensitivity. As reported in [46], the sensitivity of the antigen
test is only 30.2%. Chest computed tomography (CT) has been
demonstrated to have better sensitivity for detecting COVID-
19, especially in regions with severe epidemic situations [56],
[58]. Unfortunately, it is a time-consuming process for doctors
to interpret and make a diagnosis during COVID-19 outbreak
from each CT scan with hundreds of slices. Even an experienced
radiologist can only interpret 4-10 chest CT scans per hour
[10], [3]. Therefore, an automatic CT interpretation model is
highly desired for accurate, efficient and trustworthy COVID-
19 diagnosis.

There are three great challenges in developing an automatic
CT interpretation model for COVID-19 diagnosis. (1) Although
the tasks of 3D lesion segmentation and disease classification
are highly correlated with each other for COVID-19 diagnosis,
they cannot be simultaneously learned in the existing deep
learning (DL) models [61], [34], [26], [48], [51], [53]. Hence,
it is challenging to develop a joint deep learning model of
3D lesion segmentation and disease classification. (2) Despite
being a new disease, COVID-19 has similar imaging manifes-
tations as other types of pneumonia, e.g., community acquired
pneumonia (CAP) [5]. Thus, it is a challenging task for the
model to produce a differential diagnosis between COVID-
19 and other similar types of pneumonia. (3) Most automatic
diagnosis models [30], [31], [40], [27] are based on “black box”
deep neural networks (DNNs) [25], [20], [12], [52], which lack
sufficient explainability to assist radiologists in making credible
diagnoses. The explainability of DNNs is another challenge in
the design of automatic CT interpretation models for COVID-19
diagnosis.

To tackle the above challenges, we establish a large-scale CT
database, called 3DLSC-COVID, which is the first CT database
with fine-grained 3D lesion segmentation and classification
labels of COVID-19, CAP and non-pneumonia. Based on the
lesion characteristics found from this database, we propose a
joint DL model, namely DeepSC-COVID, for accurate 3D lesion
segmentation and the diagnosis of COVID-19. Specifically, the
DeepSC-COVID model consists of three subnets, i.e., cross-
task feature, 3D lesion segmentation and disease classifica-
tion subnets, and is able to simultaneously generate the 3D
segmented lesion and the classification results of COVID-19,
CAP or non-pneumonia. In the classification subnet, a new
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multi-layer visualization mechanism is developed to generate
the evidence masks that contain small and indistinct lesions
for disease diagnosis. In this way, the process of COVID-19
diagnosis in our model is explainable. Besides, in the training
phase, a novel task-aware loss is proposed on the basis of
our visualization mechanism for efficient interaction between
the tasks of segmentation and classification. With the guidance
of the segmented lesions, the classification subnet is able to
focus on the lesions, such that the diagnosis of COVID-19 can
be significantly accelerated with higher classification accuracy.
Note that, different from the single-scale attention constrained
mechanism [37], our task-aware loss has multi-scale attention
constraint to generate more fine-grained visualization maps.
Additionally, the task-aware loss is used in our method to
optimize both tasks of segmentation and classification, thus
being able to interact the information between these two tasks
and to boost the performance of both tasks. In conclusion,
the developed DeepSC-COVID model can provide the rapid,
accurate and explainable diagnosis of COVID-19, meanwhile
visualizing the fine-grained lesions for doctors.

To the best of our knowledge, our method is one of the
pioneering works in joint learning of 3D lesion segmentation
and disease classification based on 3D CT scans, especially
for the disease of COVID-19. The main contributions of this
paper are as follows. (1) We establish a large-scale database
of CT scans, with fine-grained lesion annotations, for the
diagnosis of COVID-19 and CAP. (2) We thoroughly analyze
the new database, and yield 4 important findings about the lesion
differences between the diseases. (3) We propose an explainable
deep multi-task learning model for both tasks of 3D lesion
segmentation and disease classification of COVID-19.

II. RELATED WORK

Imaging-based COVID-19 databases. Although many people
infected by COVID-19, it is still not easy to build a large-scale
imaging-based COVID-19 databases, due to the privacy of the
patients and hospitals. Table I summarizes the representative
CT/X-rays based COVID-19 databases that are public online.
As can be seen from this table, most existing public databases
lack fine-grained lesion annotation, and only a few of them
have small scale of lesion segmentation labels. This is probably
because of the lack of the experts with rich experience in
diagnosing COVID-19. In contrast, this paper establishes a
large-scale database of 1,805 CT scans with 458,730 slices, in
which 157,696 slices are annotated with lesions. It is worth
mentioning that the lesion-annotated slices of our database are
around 17 times more than those of the largest 3D lesion
segmentation database [48].

Automatic COVID-19 diagnosis on CT scans. In the
past few months, many DL-based methods were developed for
COVID-19 diagnosis on CT scans [61], [26], [37], [17], [64],
[48]. They mainly focus on two tasks: disease classification
and lesion segmentation. In order to automatically diagnose
COVID-19, Li et al. [26] proposed a COVID-19 detection neural
network (COVNet) using ResNet-50 [18] as the backbone.
With a series of CT slices as inputs, COVNet generates a
classification result for each CT scan. Similarly, ouyang [37] et
al. designed a dual-sampling attention network for classifying

TABLE I
SUMMARY OF THE EXISTING COVID-19 DATABASES.

Database Type # Slices #Cases Lesion Annotation*
[9] X-rays 761 412 -
[8] X-rays 2,905 - -
[49] X-rays 16,756 13,645 -
[13] X-rays+CT 5,381 1,311 -
[59] CT 349 216 -
[7] CT 1,103 64(videos) -
[36] CT 1,110 - -
[4] CT 2,482 120 -
[50] CT 453 99 -
[61] CT 361,221 2,246 2D (4,695 slices)
[2] CT 144,167 750 2D (3,855 slices)
[32] CT 3,520 20 3D (1,844 slices)
[48] CT 76,250 558 3D (9,015 slices)

Ours CT 458,730 1,805 3D (157,696 slices)
* “2D” means that only part of the slices of one CT scan are annotated,
while “3D” denotes that all the slices with lesions of a CT scan are annotated.

COVID-19 and CAP. Specifically, they proposed an online
attention module with a 3D convolutional network to focus
on the infection regions in lungs for the diagnosis. Different
from the disease classification methods, other works [64], [48]
focused on COVID-19 lesion segmentation. Specifically, Zhou
et al. [64] proposed a fully automatic machine-agnostic method
that can segment and quantify the infection regions on CT
scans from different sources. Wang et al. [48] designed a noise-
robust framework for automatic segmentation of COVID-19
pneumonia lesions from CT scans. Unfortunately, all above
methods neglect the correlation between disease classification
and lesion segmentation. In fact, the lesion segmentation results
act as explainable diagnostic evidence for disease classification;
meanwhile, the classification results are able to further improve
the accuracy of lesion segmentation.

Only a few DL-based methods [23], [61], [33] have been
developed to perform both tasks of lesion segmentation and
disease classification for COVID-19. Specifically, Mahmud et
al. [33] proposed a hybrid attention based network for lesion
segmentation, diagnosis, and severity prediction of COVID-
19. In their training stage, the lesion segmentation network
is optimized firstly and is then integrated into the training
of diagnosis and severity prediction. Similarly, Jin et al. [23]
proposed a sequential optimization pipeline, in which they first
train the lesion segmentation network alone, and then use the
segmentation results to train the classification network. How-
ever, all these methods cannot be seen as multi-task learning
according to the definition of [45], since they separately learn
the two tasks, ignoring the information sharing between two
tasks. In contrast, our DeepSC-COVID method is a multi-task
deep learning work, as it can jointly learn the two tasks of 3D
lesion segmentation and classification for COVID-19, achieving
task-aware information sharing through the proposed cross-task
feature subnet and the novel task-aware loss. This way, the tasks
of lesion segmentation and disease classification can boost each
other to achieve better performance.

III. DATABASE AND ANALYSIS

A. Database Establishment.

This retrospective study was performed in accordance with
the Declaration of Helsinki of the World Medical Association
and was approved by the medical ethics committee of Liyuan
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Fig. 1. Illustration and statistical analysis of our database. (a) Front, side and top views of 3D chest CT scans with 3D lesion segmentation for one COVID-19
(upper row), one CAP (middle row) and one non-pneumonia (lower row) individuals. Note that the lesions in lungs are marked in red. (b), Two selected 2D
CT slices, corresponding to 3D CT scan in the same row. The lesions in each slice are encircled by green lines. (c) Case reports of the three individuals. (d)
Histogram of lesion counts in the CT scans for all COVID-19 and CAP individuals in our 3DLSC-COVID database. (e) Width, length and height of each lesion
in 3D CT scans for COVID-19 and CAP, respectively. For better visualization, only 372 lesions are randomly selected from our database. (f) Distribution curves
of CT values in the lesions of CAP and COVID-19 CT scans, respectively. (g) Histograms of lesion count in the CT scans for CAP and COVID-19, respectively.
(h) Standard deviations of lesion distribution for CAP and COVID-19 with varied lesion volume ratios. (i) Changes of peripheral lesion ratio with peripheral
thickness varying from 0 to 35 mm for CAP and COVID-19, respectively. Note that the results of these charts (d, f-i) are obtained upon all CAP and COVID-19
CT scans in our 3DLSC-COVID database.

Hospital, Tongji Medical College, Huazhong University of Sci-
ence and Technology. Besides, all data were anonymized.

For establishing our 3DLSC-COVID database 1, a total of
1,805 3D chest CT scans with more than 570,000 CT slices
were collected from 2 standard CT scanners of Liyuan Hospital,
i.e., UIH uCT 510 and GE Optima CT600. Among all CT scans,
there were 794 positive cases of COVID-19, which were further
confirmed by clinical symptoms and RT-PCR from January 16 to

1The 3DLSC-COVID database is available at IEEE Dataport https://dx.doi.
org/10.21227/mxb3-7j48.

April 16, 2020. Additionally, 540 positive cases of CAP and 471
non-pneumonia cases were randomly selected from the same
hospital between November 5, 2016 and April 28, 2020. In
contrast to existing CT-based COVID-19 databases [57], [62],
[64], our 3DLSC-COVID database is the first CT database
with both fine-grained 3D lesion segmentation and disease
classification labels for the COVID-19 and CAP diagnosis. More
details about patients and CT scans of the 3DLSC-COVID
database are summarized in the supplementary material.

For lesion segmentation, we recruited 2 resident radiologists

https://dx.doi.org/10.21227/mxb3-7j48
https://dx.doi.org/10.21227/mxb3-7j48
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with over 2 years of experience to annotate the areas and
boundaries of the lesions in each 2D CT slice. Then, for
each CT scan, the 2D annotated lesions of all CT slices were
merged to obtain the 3D lesions. Subsequently, the 2 resident
radiologists were asked to further refine the segmented lesions
in 3D viewing mode. At last, both 2D and 3D lesions were
reviewed and corrected by a senior radiologist with over 10
years of experience in thoracic radiology. Some examples of the
annotated CT scans for COVID-19, CAP and non-pneumonia
individuals are shown in Fig. 1.

B. Analysis of characteristics of 3D lesion.

We characterize the 3D lesions of COVID-19 and CAP via
thoroughly analyzing the lesion annotations in our 3DLSC-
COVID database. Four important findings are obtained in terms
of the count, size, CT value and spatial distribution of 3D
lesions, which are briefly introduced as follows.

Finding 1: The number of lesions for COVID-19 is consider-
ably more than that for CAP.

Analysis: As shown in Fig. 1 (d), the number of lesions for
COVID-19 is around 2.6 times than that for CAP, i.e., averagely
4.4 lesions per CT scan for COVID-19 versus 1.7 for CAP. To be
more specific, 54.8% CT scans of CAP in our database contain
only one lesion, while around 55.2% CT scans for COVID-
19 have 4 or more lesions. Fig. 1 (a) visualizes the segmented
lesions of COVID-19 and CAP, which also indicate the obvious
difference of lesion counts between COVID-19 and CAP.

Finding 2: The overall lesion volume in COVID-19 CT scans
is significantly larger than that for CAP. Additionally, compared
with CAP, the lesions of COVID-19 vary significantly in size.

Analysis: Fig. 1 (g) shows the histogram of the lesion volume
ratio (LVR) for all COVID-19 and CAP individuals in the
3DLSC-COVID database. Here, LVR indicates the proportion of
lesions to the whole lung. As shown in this figure, the average
LVR for COVID-19 is around 3.3 times higher than that for
CAP per CT scan, i.e., the average LVR is 14.3% for COVID-
19 versus 4.4% for CAP. The CAP cases with LVR larger than
12% accounts for only 5%, while the COVID-19 cases with
LVR larger than 12% accounts for above 50%.

In addition to the lesion volume, we compare the 3D size
of lesions for COVID-19 and CAP. The 3D size is measured
by drawing a bounding box for each lesion, which is defined
as the minimum cuboid to wrap the lesion. Fig. 1 (e) shows
the 3-D scatter diagram with axes of width, length and height,
drawn on 372 randomly selected lesions from our database. As
can be seen in this figure, the 3D size of lesions for CAP is
concentrated. Specifically, the width, length and height of over
90 % CAP lesions are densely distributed in the range of [35
mm, 105 mm] (span = 70 mm), [42 mm, 105 mm] (span = 63
mm) and [85 mm, 160 mm] (span = 75 mm), respectively. In
contrast, the 3D lesion size of COVID-19 is with a larger span,
i.e., [15 mm, 140 mm] (span = 125 mm) in width, [15 mm, 170
mm] (span = 155 mm) in length and [30 mm, 240 mm] (span
= 210 mm) in height, respectively. This verifies that the lesions
of COVID-19 vary significantly in size compared to those of
CAP.

Finding 3: Compared to the CAP lesions which can either
display low or high density in CT images, the COVID-19 lesions
tend to mainly display low density (darker).

Analysis: The densities of CAP and COVID-19 lesions are
investigated in terms of CT values. Fig. 1 (f) shows the
distribution curves of CT values in the lesions of CAP and
COVID-19, respectively. Note that smaller CT values indicate
lower density. As can be seen, for COVID-19 lesions, the
distribution curve only has one peak, with more than 70% of
the CT values concentrated between −960 Hounsfield unit (HU)
and −600 HU. In contrast, for CAP lesions, the CT value
distribution has two primary peaks, i.e., over 75% of the CT
values are distributed in [−970 HU, −580 HU] and [−70 HU,
140 HU]. As such, the COVID-19 lesions tend to mainly display
low density, while the CAP lesions can either display low or
high density. A possible medical explanation for this finding
lies in the lesion types. Specifically, the COVID-19 lesions are
mainly ground-glass opacity (GGO) [22], [6], which is a pattern
of hazy increased lung opacity that shows low contrast with
surrounding regions. In addition to GGO, CAP has another type
of lesion called consolidation. The consolidation is a typical
pneumonia lesion that has the homogeneous increase in lung
parenchymal attenuation of CT scans, which is in highly contrast
with surrounding regions. Some examples of the segmented
lesions in 2D CT slices for COVID-19 and CAP can be seen in
Fig. 1 (b).

Finding 4: The COVID-19 lesions are mostly scattered in the
peripheral area of lungs. In contrast, the CAP lesions are more
concentrated, which are mainly distributed in the central area
of lungs.

Analysis: The spatial distribution of the lesions is evaluated
for CAP and COVID-19, by measuring the standard deviation
of the lesion centers in all CT scans. Here, the lesion center
is the central point of the lesion bounding box, and a larger
standard deviation indicates more scattered lesion distribution.
For specific analysis, we divide all CT scans into different
groups upon their lesion volume ratios. Fig. 1 (h) shows the
standard deviations of lesion distribution in different groups of
CAP and COVID-19. As can be seen in this figure, the standard
deviation of lesions in COVID-19 is significantly larger than that
in CAP for all CT groups. In particular, for the CT group with
lesion volume ratio from 4% to 6% , the standard deviation is
86.0 on average for COVID-19, compared with only 15.6 for
CAP. This demonstrates that the spatial distribution of COVID-
19 lesions is more scattered than that of CAP.

Next, the lesion distribution areas in CT scans are analyzed
for CAP and COVID-19, by calculating the proportion of lesions
within the peripheral lung areas to the overall lesions, denoted
as peripheral lesion ratio (PLR). To calculate PLR, given a CT
scan, we first generate the 3D binary masks of the lung areas
by a state-of-the-art lung segmentation algorithm [21]. For the
CT scan with slice S, width W and height H , the lung and
lesion masks are denoted as U ∈ RS×W×H and L ∈ RS×W×H ,
respectively. Then, PLR is defined as follows:

PLR =

∑S
s=1

∑W
i=1

∑H
j=1[Us − E(Us, σ)]i,jLs,i,j∑S

s=1

∑W
i=1

∑H
j=1 Ls,i,j

, (1)
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Fig. 2. Framework of the proposed DeepSC-COVID model.

where Us is the s-th slice of the lung mask U, and E(Us, σ)
is the erosion operation with the erosion kernel of σ in radius.
Note that the difference between the lung mask and its erosion
result [Us − E(Us, σ)] can be regard as the peripheral lung
areas, which is controlled by the hyper-parameter of σ denoted
as peripheral thickness in the following. Fig. 1 (i) shows the
PLR with different peripheral thickness for the CT scans of
COVID-19 and CAP in the 3DLSC-COVID database. As shown,
the COVID-19 lesions are more possibly distributed in the
peripheral area of the lung, e.g., PLR= 62.4% for COVID-
19 lesions versus 24.5% for CAP lesions. This indicates the
significant difference of lesion distribution between CAP and
COVID-19 in CT scans.

The above findings reveal the typical characteristics of lesions
for COVID-19, and are used as guidance to design our DeepSC-
COVID model for automatic CT interpretation in COVID-19
diagnosis.

IV. METHODOLOGY

A. Framework of DeepSC-COVID

As illustrated in Fig. 2, the proposed DeepSC-COVID model
2 consists of 3 subnets: cross-task feature, 3D lesion and
classification subnets. For 3D lesion segmentation, due to the
limited GPU memory, it is difficult to input the full-sized CT
scans. As such, the original CT scan is cropped into smaller non-
overlapping 3D patches. For classification, the 3D CT scan is
preprocessed by slice sampling at an average interval to remove
the redundancy between adjacent slices, in order to improve the
classification efficiency.

After preprocessing, both the cropped 3D CT patch and
sampled 2D CT slices are fed into the cross-task feature subnet
with 3D inception blocks and cross-stitch unit. Specifically,
based on the classic 2D inception block [47], the 3D inception
block is designed to extract the multi-scale 3D features from the
cropped 3D CT patch and sampled 2D CT slices, respectively.

2The source codes of our DeepSC-COVID model are available at Github
(https://github.com/XiaofeiWang2018/DeepSC-COVID)
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COVID model.

Then, the cross-stitch unit is developed to mix the features
to generate 3D lesion features (L-features) and classification
features (C-features). These two features are fed into the 3D
lesion and classification subnets, respectively. In the 3D lesion
subnet, a 3D U-Net and a segmentation generator are designed
to segment the multi-scale 3D lesions of COVID-19 or CAP.
In the classification subnet, a 3D encoder and a classifier
are developed to predict the probability scores for COVID-
19, CAP and non-pneumonia. Besides, the task-aware loss is
proposed for learning the task interaction across the 3D lesion
and classification subnets. To obtain the evidence masks of
the classification subnet, we propose a multi-layer visualiza-
tion method for extracting the pathological regions for disease
diagnosis. Finally, according to the predicted probabilities, the
input 3D CT scan can be classified as COVID-19, CAP or non-
pneumonia.

B. Cross-task feature subnet.

Let Xseg and Xcls denote the cropped 3D patch and the
sampled CT slices after preprocessing, the details of which is
introduced in Section V-A. Given Xseg and Xcls, the cross-

https://github.com/XiaofeiWang2018/DeepSC-COVID
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task feature subnet is designed to jointly extract the 3D features
for the subsequent 3D lesion segmentation and classification
subnets. The structure of the cross-task feature subnet is shown
in Fig. 3, which consists of 2 cascaded components, i.e., the
3D inception block and the cross-stitch unit. The structure
details about these 2 components are described in the following
paragraphs.

(1) 3D inception block. Based on the classic 2D inception
block [47], the 3D inception block is developed to extract the
multi-scale 3D features. The 3D inception block has 4 branches
with cascaded 3D convolutional layers. Benefiting from the mul-
tiple receptive fields of different branches, the multi-scale 3D
features are extracted, followed by the group normalization [55]
and rectified linear unit (ReLU) activation. The specific kernel
size, stride and output channel for each 3D convolutional layer
are shown in supplementary material. The Xseg and Xcls are
input to two different 3D inception blocks, to extract 3D features
for the segmentation and classification tasks, respectively. These
two 3D inception blocks do not share parameters, allowing for
inception blocks to extract more efficient features for each single
task.

(2) Cross-stitch unit. Next, the cross-stitch unit is proposed to
enhance the information interaction between the segmentation
and classification tasks. Specifically, given the extracted 3D
features from the 3D inception blocks, dimension matching
is first conducted to unify the receptive field of the extracted
features via zero-padding and 3D cropping. Let Iseg and Icls
denote the dimension-matched features for segmentation and
classification, respectively. Then, for enhancing the information
interaction, Iseg and Icls are linearly combined to generate the
final cross-task 3D lesion features (L-features) Fseg and classi-
fication features (C-features) Fcls via the following formulation:[

Fseg

Fcls

]
=

[
wseg,1 wcls,2

wseg,2 wcls,1

] [
Iseg
Icls

]
, (2)

where wcls,1, wcls,2, wseg,1 and wseg,2 are learnable weights.
Then, Fseg and Fcls are fed into the subsequent 3D lesion and
classification subnets for further processing.

C. 3D lesion subnet.

Given L-features Fseg extracted from the cross-task feature
subnet, the 3D lesion subnet is developed to segment the 3D
lesions of CT scans. The structure of the 3D lesion subnet
is shown in Fig. 4. In the 3D lesion subnet, a U-shaped 3D
structure, which is composed of three down-transition units and
three up-transition units, is designed to extract the features for
precisely localizing 3D lesions. Specifically, the input L-features
Fseg are progressively contracted and down-sampled through
three down-transition units followed by 3D max pooling layers
with stride of 2. In this way, the contextual information of 3D
CT scans can be captured in the outputs of the last down-
transition units, namely contextual features. Subsequently, the
contextual features are progressively expanded and up-sampled
through three up-transition units followed by deconvolutional
layers [60] with stride of 2. Note that the skip connections are
adopted between the up-transition unit and its corresponding
down-transition unit, in order to provide boundary information
during the up-sampling process. Detailed structures of down-
transition and up-transition units can be found in supplementary
material.

Then, the outputs of the last down-transition unit and each up-
transition unit are further processed by the 3D convolution layers
to generate the multi-scale intermediate segmentation. Assuming
that Ŝi is the segmentation result at the i-th scale, the final
segmentation lesion Ŝ is calculated as follows:

Ŝ = sigmoid
( 4∑
i=1

ηi ·UP(Ŝi, 2
4−i)

)
. (3)

In the above equation, {ηi}4i=1 are the hyper-parameters to
balance the intermediate segmentation at different scales, and
UP(·, t) is the t-time upscale operation. During the training
stage, segmented lesion Ŝ is supervised by its corresponding
ground-truth lesion. Furthermore, the intermediate segmentation
result is also supervised by the multi-scale lesion evidence
masks from the classification subnet, with minimization on the
task-aware loss. The details of the evidence masks and the task-
aware loss are introduced in the following sections.

D. Classification subnet.

The classification subnet is developed to classify the input
CT scan into 3 classes: COVID-19, CAP and non-pneumonia.
The structure of the classification subnet is illustrated in Fig. 5.
For focusing on lesions during classification, segmented lesions
Ŝ, together with C-features Fcls, are input to the classification
subnet. Specifically, the segmented lesions and C-features are
concatenated after convolutional layers. Then, the concatenated
features are hierarchically encoded into small scales by the 3D
encoder units, which are designed in a residual mechanism (see
supplementary material for more details).

Let {Fe1,k}64k=1
3 denote the 64-channel feature maps gener-

ated from the first 3D encoder unit. Subsequently, the channel-
wise global average pooling is conducted on {Fe1,k}64k=1,
outputting the spatial average of each feature map as a 64-
element feature vector [fe1,k]64k=1. Similarly, the encoded feature

3In this section, subscripts e1, e2, e3 indicate the first, second and third 3D
encoder unit. Subscript k is the channel index of the corresponding feature.
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Fig. 5. Structure of the classification subnet in the proposed DeepSC-COVID
model.

maps and their corresponding feature vectors are denoted as
({Fe2,k}128k=1, [fe2,k]

128
k=1) and ({Fe3,k}256k=1, [fe3,k]

256
k=1) for the

second and third encoder units, respectively. Finally, feature
vectors [fe1,k]64k=1, [fe2,k]128k=1 and [fe3,k]

256
k=1 are concatenated for

predicting the probability scores of COVID-19, CAP and non-
pneumonia, through a fully connected layer. This classification
process can be formulated as

p̂j = softmax
( 64∑
k=1

fe1,k·wk,je1 +

128∑
k=1

fe2,k·wk,je2 +

256∑
k=1

fe3,k·wk,je3
)
,

(4)
where p̂j is the predicted probability of the j-th class, cor-
responding to COVID-19 (j = 1), CAP (j = 2) or non-
pneumonia (j = 3). Additionally, [wk,je1 ]64k=1, [wk,je2 ]128k=1 and
[wk,je3 ]256k=1 are the learnable weights in the fully connected layer,
corresponding to the j-th class. Consequently, the class with
maximal probability score is regarded as the final classification
result.

Next, inspired by the visualization algorithm [63], we mainly
focus on multi-layer network visualization in the classification
subnet for generating lesion evidence masks, which are utilized
to supervise the intermediate segmentation results in the 3D
lesion subnet, through the task-aware loss. Similar to equation
(4), the lesion evidence masks of each class can be calculated as
the weighted sum of the encoded feature maps, i.e., {Fe1,k}64k=1,
{Fe2,k}128k=1 or {Fe3,k}256k=1. Assume that {Vi}3i=1 are the multi-
layer lesion evidence masks of a predicted class (taking the
j-th class as an example). Then, mathematically, they can be
formulated as

V1 = CROP(
∑64
k=1 Fe1,k · wk,je1 ),

V2 = CROP(
∑128
k=1 Fe2,k · wk,je2 ),

V3 = CROP(
∑256
k=1 Fe3,k · wk,je3 ).

(5)

Recall that [wk,je1 ]64k=1, [wk,je2 ]128k=1 and [wk,je3 ]256k=1 are learned
weights in equation (4), and CROP(·) denotes the crop function.
It is worth mentioning that the network visualization is only
conducted in the training stage when calculating the task-aware
loss, which is defined in the next section.

E. Loss functions.

The loss functions are introduced for training the DeepSC-
COVID model, including segmentation, classification and task-
aware loss. Specifically, segmentation and classification loss are
developed for separately training 3D lesion and classification
subnets. The task-aware loss is proposed to guide the 3D lesion
subnet for precise segmentation upon the visualization masks
learned from the classification subnet. The details about the
proposed loss functions are introduced as follows.

(1) Segmentation loss. For the segmentation task, the Dice
loss [15] is adopted to measure the overlapping area between
the predicted segmentation map Ŝ and its ground-truth lesion
mask S as follows:

Ldice
seg = 1− 2‖Ŝ ◦ S‖1

‖Ŝ‖1 + ‖S‖1
, (6)

where ◦ denotes the Hadamard product. In addition to the Dice
loss, we utilize the focal loss [29] to reduce the effect of the
class imbalance between the lesion and background regions:

Lfocal
seg = −α·(1−Ŝ)γ ·S·log(Ŝ)−(1−α)·Ŝγ ·(1−S)·log(1−Ŝ),

(7)
where α is a hyper-parameter to balance the training samples of
lesions and background, and γ is a hyper-parameter controlling
the degree of loss focus on hard samples. Consequently, the
segmentation loss Lseg in our DeepSC-COVID can be calculated
as

Lseg = λdiceLdice
seg + λfocalLfocal

seg , (8)

where λdice and λfocal are the hyper-parameters to balance the
Dice and focal loss.

(2) Classification loss. For the disease classification task,
we develop the weighted cross-entropy loss to measure the
distance between the predicted class and the ground-truth label.
Mathematically, the classification loss Lcls for training the
classification subnet can be formulated as

Lcls = ξy · (−
C−1∑
j=0

1{j = y} log p̂j). (9)

In the above equation, C is the number of the classes (3 in this
paper), y is the ground-truth label, p̂j is the predicted probability
of the j-th class, and 1{·} denotes the indicator function. It is
worth noting that ξy in equation (9) is the inverse frequency[29]
of class y, which is counted over all training samples. This way,
the class imbalance of the training samples can be relieved.

(3) task-aware loss. In addition to the segmentation and
classification loss, we further propose the task-aware loss, which
guides the classification and segmentation task to focus on
the task relevant regions of each other. Specifically, the multi-
scale intermediate segmentation results {Ŝi}3i=1 in the 3D lesion
subnet are constrained to be similar with the multi-layer lesion
evidence masks {Vi}3i=1 in the classification subnet through the
task-aware loss Lta defined as follows:

Lta =

3∑
i=1

ηi · ‖Ŝi −Vi‖22. (10)

Recall that ηi is defined in equation (3) for the 3D lesion subnet.
Benefiting from the proposed task-aware loss, the 3D lesion
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TABLE II
THE SEGMENTATION AND CLASSIFICATION PERFORMANCE OF OUR MODEL, HUMAN EXPERT AND OTHER MODELS. THE METRICS ARE PRESENTED IN THE

FORMAT OF MEAN (STANDARD DEVIATION). NOTE THAT THE 3D LESION SEGMENTATION AND CLASSIFICATION SUBNETS IN OUR MODEL ARE DENOTED AS
SEG. AND CLS., RESPECTIVELY.

Modality Time (s) DSC (%) Sensitivity (%) Specificity (%) NSD (%) RMSD (mm)
Human expert 3D 869.2 60.3 (10.8) 61.2 (7.2) 88.7 (1.2) 60.2 (3.6) 12.8 (4.1)
U-Net++L1 2D 1.0 61.2 (5.7) 66.7 (6.4) 90.9 (0.8) 62.4 (3.6) 13.6 (2.3)
U-Net++L4 2D 8.2 65.3 (6.2) 71.3 (5.8) 92.8 (0.6) 66.8 (3.1) 9.6 (2.6)
DenseVNet 3D 2.8 63.7 (7.4) 69.2 (5.9) 92.1 (0.7) 63.6 (2.7) 7.8 (3.1)
COPLE-Net 2D 10.8 67.2 (6.8) 73.4 (7.2) 93.2 (0.6) 68.3 (1.9) 5.2 (2.2)
FSS-2019-nCov 2D 8.7 67.9(7.6) 74.1 (5.2) 93.8 (0.7) 68.8 (2.1) 5.4 (3.0)
DeepSC-COVID w/o Cls. 3D 1.1 66.2 (7.7) 72.7 (4.9) 92.7 (0.8) 64.3 (2.8) 6.2 (2.5)Se

gm
en

ta
tio

n

DeepSC-COVID 3D 2.2 73.3 (8.5) 80.2 (6.8) 95.6 (0.7) 71.8 (2.6) 2.8 (1.6)

Modality Time (s) Accuracy (%) Sensitivity (%) Specificity (%) F1-score (%) AUC (%)
Human expert 3D 378.7 95.8 (0.4) 96.0 (0.4) 97.9 (0.7) 95.7 (0.3) −
ResNet-50 2D 9.2 77.7 (0.7) 79.2 (0.2) 87.7 (0.6) 77.9 (0.8) 92.0 (0.1)
3D ResNet-50 3D 0.6 82.5 (0.2) 82.5 (0.7) 90.6 (0.2) 82.0 (0.5) 94.5 (0.2)
COVNet 2D 5.3 87.2 (0.8) 87.6 (0.3) 93.7 (0.4) 87.5 (0.3) 97.4 (0.1)
DeCoVNet 3D 2.3 89.2 (0.5) 89.0 (0.4) 94.3 (0.2) 88.9 (0.8) 98.3 (0.1)
DeepSC-COVID w/o Seg. 3D 0.7 85.2(0.4) 85.3 (0.2) 91.9 (0.3) 84.9 (0.1) 94.4 (0.2)C

la
ss

ifi
ca

tio
n

DeepSC-COVID 3D 2.2 94.5 (0.3) 94.7 (0.2) 97.3 (0.5) 94.2 (0.6) 98.8 (0.1)

subnet offers potential in segmenting some tiny lesions of the
CT scans, which may be neglected by radiologists. For more
details, see the ablation study of the task-aware loss in Section
V-E.

(4) Total loss. By combining the segmentation, classification
and task-aware loss, the total loss function for our DeepSC-
COVID model can be formulated as follows:

L = λsegLseg + λclsLcls + λtaLta, (11)

where λseg, λcls and λta are the hyper-parameters to balance
the corresponding loss.

V. EXPERIMENTS

A. Implementation details

Database split. All experiments are conducted with data from
the proposed 3DLSC-COVID database. Specifically, the CT
scans in the 3DLSC-COVID database are divided into training
and test sets. The training set contains 1,353 CT scans (595
for COVID-19, 405 for CAP and 353 for non-pneumonia) and
the test set has 452 CT scans (199 for COVID-19, 135 for
CAP and 118 for non-pneumonia). We employ 10-fold cross-
validation strategy on the training data for adjusting hyper-
parameters. The comparisons among our model, other models
and human expertise with respect to lesion segmentation and
disease classification are all conducted on the test set.
Preprocessing. For efficient training, the 3D CT scans are pre-
processed before inputting to the DeepSC-COVID model. The
preprocessing phase includes two steps. First, for highlighting
the anatomical structures, the original CT values of the CT scans
are truncated into [−1, 400 HU, 200 HU] [11]. Then, the CT
scans are further normalized to [0, 1]. To focus on the lung areas,
the CT scans are masked with the lung binary masks generated
by a state-of-the-art lung segmentation algorithm [21].

Second, for conservation of the limited computational re-
sources, the size of 3D CT scans is reduced to generate two
inputs to the model, corresponding to the respective tasks of
segmentation and classification. Let X ∈ RS×W×H denote the
3D CT scan with slice number S, width W and height H .
In the 3DLSC-COVID database, the slice number S is within

the range of [121, 374], and the width W and the height H
are both 512. For the segmentation task, the CT scan X is
cropped into smaller non-overlapping 3D patches Xseg with
size 24×256×256 as the input. The 3D segmented patches are
aligned as the final segmentation result. For the classification
task, X is processed by slice sampling to select N (= 48 in
this paper) slices spaced equidistantly, which can reduce the
redundancy between consecutive slices for further accelerating
the inference process. Mathematically, the sampled CT scan
Xcls can be formulated as

Xcls =
{
Xs

∣∣s ∈ {1 + (k − 1)b S
N
c}N−1
k=1

}
, (12)

where Xs is the s-th slice of the CT scan X, and b·c is a floor
function. Consequently, the size of Xcls is 48× 512× 512 for
the classification task.

Model training. We follow the two-stage training scheme
[28] to train our joint learning model . In the first stage, we
separately pre-train the corresponding subnets for segmentation
and classification tasks. For segmentation, we pre-train part of
the cross-task feature and the 3D lesion segmentation subnets,
and for classification, we pre-train the other part of the cross-
task feature and the disease classification subnets. In the second
stage, all the 3 subnets are simultaneously fine-tuned based on
the pre-trained models, over both tasks of segmentation and
classification. At both stages, the parameters are updated using
the Adam optimizer [24], with a first-order momentum of 0.9
and a second-order momentum of 0.999. The initial learning
rates are set to 0.001 for the pre-training stage and 0.0001
for the fine-tuning stage, which are adjusted by linear decay
for stable training. The values of the key hyper-parameters
for training can be found in the supplementary material. Our
DeepSC-COVID model is implemented on PyTorch [38] with
the Python environment. All experiments are conducted on a
computer with an Intel(R) Core(TM) i7-6900 CPU@3.20 GHz,
128 GB RAM and 4 Nvidia GeForce GTX 1080 TI GPUs. For
fair comparison, all compared methods are reimplemented and
timed using the same computer as ours.
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Fig. 6. Visual comparison of 3D and 2D lesion segmentation results. (a-b) Segmentation results of two COVID-19 samples. (c) Segmentation results of CAP
sample. For 3D visualizations, the lesions and lungs are shown in red and grey for better view. For 2D visualizations, orange and green curves indicate the
ground-truth segmentation results and the results generated by different methods.

B. 3D lesion segmentation results

We qualitatively and quantitatively evaluate the lesion seg-
mentation performance of our DeepSC-COVID model. Table
II reports the 3D lesion segmentation results of our DeepSC-
COVID and other state-of-the-art segmentation models. As
shown in this table, our model achieves high accuracy in
3D lesion segmentation, i.e., 73.3%, 80.2%, 95.6%, 71.8%,
and 2.8 mm in terms of Dice similarity coefficient (DSC),
sensitivity, specificity, normalized surface Dice (NSD) and root

mean square symmetric surface distance (RMSD), respectively.
In contrast to our model, the accuracy of other segmentation
models is relatively low, e.g., the DSC scores are only 61.2%,
65.3%, 63.7% and 67.2% for UNet++L1 [65], UNet++L4 [65],
DenseVNet [16] and COPLE-Net [48], respectively. Note that
UNet++L1 and UNet++L4 are the lightest and heaviest versions
in [65]. Similar results can be found for other metrics, including
sensitivity, specificity, RMSD and NSD. Additionally, Fig. 6
visualizes the segmentation results of our and the comparison
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ROC curve of COVID-19 ROC curve of CAP ROC curve of NP

(a) (b) (c)

Fig. 7. The ROC curves of our DeepSC-COVID model, other models and human expert in the identification of COVID-19 (a), CAP (b) and NP (c).

models. As shown, our DeepSC-COVID model can locate both
the COVID-19 and CAP lesions with higher accuracy than other
models. In addition to the segmentation accuracy, we outperform
most compared models in terms of segmentation efficiency, i.e.,
it takes 2.2 seconds for our model to segment a 3D CT scan,
while other models require 1.0 to 10.8 seconds to process one
3D CT scan.

To further show the superiority of our DeepSC-COVID
model, we compare the segmentation performance between
our model and a human expert. Here, the human expert is
a radiologist with 5 years of working experience. As shown
in Table II, our model significantly outperforms the human
expert in 3D lesion segmentation, with an improvement of 14%,
19%, 6.9%, 11.6%, and 10 mm in terms of DSC, sensitivity,
specificity, NSD and RMSD, respectively. It is not surprising
to see the low dice score of the human expert, since lesion
segmentation in medical images is known to suffer from high
inter-reader variability [35]. To conclude, our DeepSC-COVID
model performs considerably better than the other segmentation
models and the human expert for 3D lesion segmentation.

C. Disease classification results

Table II shows the classification results of our DeepSC-
COVID model and 4 other state-of-the-art models for classifying
COVID-19, CAP and non-pneumonia individuals. As can be
seen, the classification accuracy (94.5%) of our model is consid-
erably higher than those of the alternative methods, i.e., ResNet-
50 [48] (77.7%) , 3D ResNet-50 [39] (82.5%) , COVNet [26]
(87.2%) and DeCoVNet [51] (89.2%). Moreover, the sensitivity,
specificity and area under the receiver operating characteristic
(ROC) curve (AUC) of our model are the highest among all
models. Table II also compares F1-score between our and other
models. Our model has an F1-score of 94.2%, while ResNet-
50, 3D ResNet-50, COVNet and DeCoVNet only yield values
of 77.9%, 82.0%, 87.5% and 88.9%, respectively. In addition,
Fig. 7 shows the ROC curves for each category, which visualize
the tradeoff between sensitivity and specificity. Compared with
other four models [48], [39], [26], [51], our ROC curve is closer
to the upper-left corner, indicating that our model achieves better

classification results than do the 4 other models. To summarize,
our DeepSC-COVID model is considerably better than 4 other
models with respect to classifying COVID-19, CAP and non-
pneumonia.

Compared to the human expert, the proposed DeepSC-
COVID model offers a great advantage in diagnosis speed, i.e.,
the classification speed of our model is 2.2 seconds, which
is significantly faster than the human expert (378.7 seconds).
In addition, our model is comparable to the human expert in
diagnosis accuracy, i.e., the average sensitivity, specificity and
F1-score of our model are only around 1.0% lower than those
of the human expert. Fig. 7 plots the classification performance
of the human expert on sensitivity-specificity plane. As can be
seen, for both COVID-19 and CAP classification, the point of
the human expert is located in the lower-right areas of our
ROC curves, which indicates that given the same specificity
of the human expert, our model can achieve higher sensitivity
by adjusting the classification threshold. All of these results
indicate that the DeepSC-COVID model offers high classifica-
tion accuracy and speed, which offers capability for auxiliary
medical diagnosis and large-scale COVID-19 screening.

D. Multi-task gain

To evaluate the gain of multi-task learning, additional ex-
periments are conducted with single tasks of segmentation and
classification. Specifically, we first remove the classification
subnet from our model for the single segmentation task, and
then remove the segmentation subnet for single classification
task. Table II reports the results of single-task learning. As
reported, the accuracy of single-task learning is lower than
that of multi-task learning for both tasks. Specifically, for
segmentation, the multi-task gain values are 7.1%, 7.5%, 2.9%,
7.5% and 3.4 mm in terms of DSC, sensitivity, specificity,
NSD and RMSD, respectively. For classification, the multi-
task gain achieves values of 9.3%, 9.4%, 5.4%, 9.3% and
4.4% in terms of accuracy, sensitivity, specificity, F1-score
and AUC, respectively. Additionally, the results of the single
segmentation task are visualized in Fig. 6. The ROC curve of
single classification task are shown in Fig. 7.
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Fig. 8. The impacts of 3D inception block and cross-stitch unit on the performance of segmentation and classification. (a) Results of 3D lesion segmentation, in
terms of sensitivity, specificity, NSD, DSC and RMSD. (b) Results of disease classification, in terms of sensitivity, specificity, accuracy, F1-score and AUC.
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E. Ablation study

Here, we analyze the effectiveness of different components in
the proposed DeepSC-COVID model on the tasks of 3D lesion
segmentation and disease classification through ablation study.
Effectiveness of 3D inception block. We first analyze the
impact of 3D inception block on 3D lesion segmentation and
disease classification. Specifically, we replace the 3D inception
block by conventional 3D convolutional layer, in which the
kernel size, stride and output channel are the same as the 3D
inception block. Fig. 8 shows the segmentation and classification
results with and without the 3D inception block. As shown,
the performance of both segmentation and classification tasks
significantly degrades after replacing the 3D inception block.
This indicates the effectiveness of our 3D inception block in
extracting effective multi-scale 3D features for both tasks.
Effectiveness of cross-stitch unit. We further conduct the ab-
lation experiment to evaluate the impact of the cross-stitch unit
on segmentation and classification performance, by removing
it from the cross-task feature subnet in the proposed DeepSC-
COVID model. Fig. 8 shows the segmentation and classification
results with and without the cross-stitch unit. We can see from
this figure that the performance of both the segmentation and
classification degrades, when the cross-stitch unit is removed.
This validates the positive contribution of cross-stitch unit to
our model.
Effectiveness of task-aware loss. Finally, we evaluate the im-
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Fig. 10. Visualization maps and segmentation results of both correct-prediction
and false-prediction cases.

pact of the proposed task-aware loss. To be specific, we train the
DeepSC-COVID model with different weights λta on the task-
aware loss, i.e., λta = 0, 100, 101, 102 in equation (11) of the
main text. Note that λta = 0 indicates that the task-aware loss is
fully removed. Fig. 9 shows the segmentation and classification
results with different λta. As shown, the DeepSC-COVID model
performs the worst, when the task-aware loss is fully removed
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TABLE III
MEAN VALUES IN TERMS OF PERCENTAGE FOR LESION SEGMENTATION AND

DISEASE CLASSIFICATION METRICS ON MULTI-SCALE AND SINGLE-SCALE
SETTINGS OF OUR TASK-AWARE LOSS.

Task Classification Segmentation
Acc. Sen. AUC DSC Sen. NSD

Single-scale 90.9 90.3 98.6 70.3 77.9 69.3
Multi-scale (ours) 94.5 94.7 99.2 73.3 80.2 71.8

(i.e., λta = 0). Besides, the performance of both segmentation
and classification reduces, when λta is either smaller or larger
than 101. This implies that the under- or over-weighted task-
aware loss degrades the performance of the DeepDC-COVID
model. In summary, the task-aware loss has a positive impact on
the proposed DeepDC-COVID model for both segmentation and
classification tasks. In addition, Fig. 10 shows some examples of
visualization maps and their corresponding segmentation results
for both correct-prediction and false-prediction cases. As can
be seen, in the correct-prediction case, the visualization map is
consistent with the lesion segmentation result. By contrast, in the
false-prediction case, there exists an obvious difference between
the visualization map and segmented lesions. This verifies the
effectiveness of the proposed task-aware loss. Moreover, these
visualization results are consistent with the clinical experience,
which further demonstrates the explainability of our method.

To evaluate the effectiveness of the multi-scale setting in the
task-aware loss, we conduct an ablation study to replace the
multi-scale setting with single-scale setting. As shown in Table
III, compared with the multi-scale setting, the performance
of the single-scale setting degrades by 3.6% in accuracy for
classification and 3.0% in DSC for segmentation. This verifies
the effectiveness of the multi-scale setting of our task-aware
loss.

VI. CONCLUSIONS

In this study, we have proposed a CT interpretation model,
namely DeepSC-COVID, for rapid, accurate and explainable
screening of COVID-19. First, we built and released an
large-scale database, called 3DLSC-COVID, which is the first
database containing both 3D lesion segmentation and disease
labels for the diagnosis of COVID-19, CAP and non-pneumonia.
Besides, we obtained four important findings through qualitative
and quantitative analysis over our 3DLSC-COVID database.
Second, a novel multi-task learning architecture is proposed
in DeepSC-COVID, for simultaneous learning of 3D lesion
segmentation and disease classification. Benefiting from the
multi-task learning architecture, our DeepSC-COVID model
can segment the lesions more accurately with the knowledge
acquired from the classification task. Finally, extensive experi-
ments verified that our method advanced the state-of-the-art in
3D lesion segmentation and disease classification.

There is still room for improvement in our model as the
future work. First, since our database only contains Chinese
patients, it may exhibit limited diagnostic performance for other
races. Future study should involve enlarging the database with
multi-ethnic cases to enable robust interpretation performance.
Second, our model only uses chest CT scan as the basis of
diagnosis for COVID-19. Although the CT scan is validated as

effective diagnostic evidence, other clinical tests, e.g., symptom
records and disease history, can also contribute to the diagnosis
of COVID-19. Hence, another future research direction is to
take advantage of multiple inputs for more comprehensive
interpretation. Third, this study only focuses on the immediate
screening of COVID-19, i.e., the diagnosis result is either
positive or negative. The graded diagnosis of COVID-19 is
desirable for the CT interpretation model, for example, grading
the suspected patients into negative, mild, moderate, severe and
critical cases. As a result, both clinical diagnosis and prognosis
can be significantly improved.
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