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Reducing Complexity of HEVC:
A Deep Learning Approach
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Abstract— High efficiency video coding (HEVC) significantly
reduces bit rates over the preceding H.264 standard but at
the expense of extremely high encoding complexity. In HEVC,
the quad-tree partition of the coding unit (CU) consumes a large
proportion of the HEVC encoding complexity, due to the brute-
force search for rate-distortion optimization (RDO). Therefore,
this paper proposes a deep learning approach to predict the
CU partition for reducing the HEVC complexity at both intra-
and inter-modes, which is based on convolutional neural net-
work (CNN) and long- and short-term memory (LSTM) network.
First, we establish a large-scale database including substantial
CU partition data for the HEVC intra- and inter-modes. This
enables deep learning on the CU partition. Second, we represent
the CU partition of an entire coding tree unit in the form of a
hierarchical CU partition map (HCPM). Then, we propose an
early terminated hierarchical CNN (ETH-CNN) for learning to
predict the HCPM. Consequently, the encoding complexity of
intra-mode HEVC can be drastically reduced by replacing the
brute-force search with ETH-CNN to decide the CU partition.
Third, an ETH-LSTM is proposed to learn the temporal correla-
tion of the CU partition. Then, we combine the ETH-LSTM and
the ETH-CNN to predict the CU partition for reducing the HEVC
complexity at inter-mode. Finally, experimental results show that
our approach outperforms the other state-of-the-art approaches
in reducing the HEVC complexity at both intra- and inter-modes.

Index Terms— High efficiency video coding, complexity
reduction, deep learning, convolutional neural network, long- and
short-term memory network.

I. INTRODUCTION

THE High Efficiency Video Coding (HEVC) standard [1]
saves approximately 50% of the bit-rate at similar video

quality compared to its predecessor, H.264/Advanced Video
Coding (AVC). This is achieved by adopting some advanced
video coding techniques, e.g., the quad-tree structure of the
coding unit (CU) partition. However, these techniques lead to
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extremely high complexity of HEVC. As investigated by [2],
the encoding time of HEVC is higher than H.264/AVC by
253% on average, making it impractical for implementation
in multimedia applications. Therefore, it is necessary to
significantly reduce the encoding complexity of HEVC with
ignorable loss in rate-distortion (RD) performance.

The past half decade has witnessed a great number of
approaches on encoding complexity reduction for HEVC. It is
found that the recursive process of the quad-tree CU partition
contributes to the largest proportion of the encoding time
(at least 80% in the reference software HM [3]). Thus, most
HEVC complexity reduction approaches attempt to simplify
the process of the CU partition. The basic idea of these
approaches is to predict the CU partition in advance, instead
of the brute-force recursive RD optimization (RDO) search.
The early works for predicting the CU partition are heuristic
approaches such as in [4]–[6]. These heuristic approaches
explore some intermediate features to early determine the
CU partition before checking all possible quad-tree patterns.
Since 2015, several machine learning approaches [7]–[11]
have been proposed to predict the CU partition toward HEVC
complexity reduction. For example, to reduce the complexity
of inter-mode HEVC, Zhang et al. [8] proposed a CU depth
decision approach with a three-level joint classifier based on
support vector machine (SVM), which predicts the splitting of
three-sized CUs in the CU partition. To reduce the complexity
of intra-mode HEVC, Liu et al. [9] developed a convolutional
neural network (CNN) based approach that predicts the CU
partition. However, the structure of the CNN in [9] is shallow,
with limited learning capacity, and thus, it is insufficient to
accurately model the complicated CU partition process. In this
paper, we propose a deep CNN structure for learning to predict
the intra-mode CU partition, thus reducing the complexity
of HEVC at intra-mode. In addition, all existing approaches,
including [8] and [9], do not explore the correlation of the
CU partition across neighboring frames. This paper develops
a long- and short-term memory (LSTM) structure to learn the
temporal dependency of the inter-mode CU partition. Then,
a deep learning approach is proposed to predict the CU
partition at inter-mode, which combines the CNN and LSTM
structures. Consequently, the encoding complexity of inter-
mode HEVC can be significantly reduced.

Specifically, in this paper, we first establish a large-scale
database for the CU partition, boosting studies on deep
learning based complexity reduction in HEVC. Our database
is available online: https://github.com/HEVC-Projects/CPH.
Our database contains the data of the CU partition at both
intra-mode (2000 raw images compressed at four QPs) and
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inter-mode (111 raw sequences compressed at four QPs).
Next, we propose a deep learning based complexity reduction
approach for both intra- and inter-mode encoding of HEVC,
which learns from our database to split an entire coding
tree unit (CTU). More specifically, we propose to efficiently
represent the CU partition of a CTU through the hierarchical
CU partition map (HCPM). Given sufficient training data and
efficient HCPM representation, the deep learning structures
of our approach are able to “go deeper”, such that extensive
parameters can be learned for exploring diverse patterns of
the CU partition. Accordingly, our deep learning approach
introduces an early-terminated hierarchical CNN (ETH-CNN)
structure, which hierarchically generates the structured HCPM
with an early-termination mechanism. The early-termination
mechanism introduced in ETH-CNN can save computational
time when running the CNN. ETH-CNN can be used to
reduce the encoding complexity of intra-mode HEVC. Our
approach further introduces an early-terminated hierarchical
LSTM (ETH-LSTM) structure for inter-mode HEVC. In ETH-
LSTM, the temporal correlation of the CU partition is learned
in LSTM cells. With the features of the ETH-CNN as the
input, ETH-LSTM hierarchically outputs HCPM by incor-
porating the learnt LSTM cells with the early-termination
mechanism. As such, our approach can also be used to reduce
the encoding complexity of inter-mode HEVC.

This paper was previously presented at the conference [12],
with the following extensions. Rather than the three-level
CU splitting labels of [12], HCPM is proposed in this paper
to hierarchically represent the structured output of the CU
partition. Based on the proposed HCPM representation,
we advance the deep CNN structure of [12] by introducing
the early-termination mechanism, for intra-mode HEVC
complexity reduction. More importantly, this paper further
proposes ETH-LSTM to reduce the HEVC complexity at inter-
mode. In contrast, our previous work [12] only addresses
complexity reduction in intra-mode HEVC. For learning
ETH-LSTM, a large-scale database of inter-mode CU partition
is established in this paper, whereas [12] only contains the
database of intra-mode CU partition. In brief, the main
contributions of this paper are summarized as follows.

• We establish a large-scale database for the CU partition
of HEVC at both intra- and inter-modes, which may
facilitate the applications of deep learning in reducing
HEVC complexity.

• We propose a deep CNN structure called ETH-CNN
to predict the structured output of the CU partition in
the form of HCPM, for reducing the complexity of
intra-mode HEVC.

• We develop a deep LSTM structure named ETH-LSTM
that learns the spatio-temporal correlation of the CU
partition, for reducing the complexity of HEVC at
inter-mode.

This paper is organized as follows. Section II reviews
the related works on HEVC complexity reduction.
Section III presents the established CU partition database.
In Sections IV and V, we propose ETH-CNN and ETH-LSTM
to reduce the HEVC complexity at intra-mode and inter-mode,
respectively. Section VI reports the experimental results, and
Section VII concludes this paper.

II. RELATED WORKS

The existing HEVC complexity reduction works can
be generally classified into two categories: heuristic and
learning-based approaches. This section reviews the
complexity reduction approaches in these two categories.

In heuristic approaches, the brute-force RDO search of the
CU partition can be simplified according to some intermediate
features. The representative approaches include [4]–[6], [13],
[14]. To be more specific, Leng et al. [4] proposed a CU
depth decision approach at the frame level, which skips certain
CU depths rarely found in the previous frames. At the CU
level, Xiong et al. [5] and Kim et al. [14] proposed deciding
whether to split CUs based on the pyramid motion diver-
gence and the number of high-frequency key-points, respec-
tively. Shen et al. [6] proposed selecting some crucial and
computational-friendly features, e.g., RD cost and inter-mode
prediction error, to early determine the splitting of each CU.
Then, the CU splitting is determined based on the rule of
minimizing the Bayesian risk. Also based on the Bayesian
rule, Cho and Kim et al. [13] developed a CU splitting and
pruning approach according to the features of full and low-
complexity RD costs. In addition to simplified the CU par-
tition, various heuristic approaches [15]–[18] were proposed
to reduce the complexity of prediction unit (PU) or transform
unit (TU) partition. For example, Khan et al. [15] proposed a
fast PU size decision approach, which adaptively integrates
smaller PUs into larger PUs with regard to video content.
Yoo et al. [16] proposed estimating the PU partition with
the maximum probability, on account of the coding block
flag (CBF) and RD costs of encoded PUs. In the latest work
of [18], the RDO quantization (RDOQ) process is accelerated
based on the transform coefficients with a hybrid Laplace
distribution. In addition, other components of HEVC, such
as intra- and inter-mode prediction and in-loop filtering, are
simplified to reduce the encoding complexity in [19]–[23].

Most recently, learning-based approaches
[7]–[11], [24]–[33] have flourished for complexity reduction
in HEVC, and even for other communication tasks [34].
These approaches utilize machine learning from extensive
data to generalize the rules of HEVC encoding components,
instead of a brute-force RDO search on these components.
For example, for intra-mode HEVC, [24] modeled the
CU partition process as a binary classification problem
with logistic regression, and [25] proposed using SVM to
perform classification in the CU partition process. As a
result, the computational time of the CU partition can be
decreased using well-trained classification models instead of
brute-force search. For inter-mode HEVC, Corrêa et al. [7]
proposed three early termination schemes with data mining
techniques to simplify the decision on the optimal CTU
structures. In [8], several HEVC domain features that are
correlated with the CU partition were explored. Then,
a joint classifier of SVM was proposed to utilize these
features in determining CU depths, such that the encoding
complexity of HEVC can be reduced because the brute-force
RDO search is skipped. Later, a binary and multi-class
SVM algorithm [11] was proposed to predict both the CU
partition and PU mode with an off-on-line machine learning
mechanism. As such, the encoding time of HEVC can be
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further saved. However, the above learning-based approaches
rely heavily on hand-crafted features that are related to the
CU partition.

For complexity reduction in HEVC, the CU partition-related
features can be automatically extracted by deep learning,
rather than manual extraction. The advantage of applying deep
learning for HEVC complexity reduction is that it can take
advantage of large-scale data to automatically mine extensive
features related to the CU partition, rather than the limited
hand-crafted features. Unfortunately, there are few deep learn-
ing works on the prediction of the CU partition. To the
best of our knowledge, the only approaches in this direction
are [9], [26], in which the CNN architectures have been
developed to predict intra-mode CU partition. The CNN
architectures of [9], [26] are not sufficiently deep due to a
lack of training data. For example, [9] only contains two
convolutional layers with 6 and 16 kernels sized 3 × 3. In
contrast, we propose the deep architectures of ETH-CNN and
ETH-LSTM for HEVC complexity reduction at both intra- and
inter-modes.

Our approach differs from the above learning-based CU
partition prediction approaches in four aspects. (1) Compared
with the conventional three-level CU splitting labels as in
[8], [9], [11], [26], the HCPM is proposed to efficiently
represent the structured output of the CU partition. This
can dramatically reduce the computational time of the CU
partition, since the complete CU partition in a whole CTU
can be obtained in terms of one HCPM by running the trained
ETH-CNN/ETH-LSTM model only once. (2) A deep ETH-
CNN structure is designed to automatically extract features
for predicting the CU partition, instead of the handcrafted
feature extraction in [8], [11]. Besides, the deep ETH-CNN
structure has much more trainable parameters than the CNN
structures of [9] and [26], thus remarkably improving the pre-
diction accuracy of the CU partition. Additionally, the early-
termination mechanism proposed in our approach can further
save computational time. (3) A deep ETH-LSTM model is
further developed for learning long- and short-term dependen-
cies of the CU partition across frames for inter-mode HEVC.
To our best knowledge, this is a first attempt to leverage LSTM
for predicting CU partition in HEVC complexity reduction.
(4) To train the large amount of parameters in ETH-CNN and
ETH-LSTM, we establish a large-scale database for the CU
partition of HEVC at both intra- and inter-modes. In contrast,
other works only rely on the existing JCT-VC database, much
smaller than our database. Our database may facilitate the
future works of applying deep learning in the CU partition
prediction for reducing HEVC complexity.

III. CU PARTITION DATABASE

A. Overview of CU Partition

The CTU partition structure [1] is one of the major
contributions to the HEVC standard, with the CU partition
as the core process. The size of a CTU is 64 × 64 pixels
by default, and a CTU can either contain a single CU or be
recursively split into multiple smaller CUs, based on the quad-
tree structure. The minimum size of a CU is configured before
encoding, with the default being 8 × 8. Thus, the sizes of the

Fig. 1. Illustration of checking and comparing RD cost between a parent
CU and its sub-CUs. Note that this illustration can be applied to the splitting
of 64 × 64 → 32 × 32, 32 × 32 → 16 × 16 or 16 × 16 → 8 × 8.

CUs in the CTU are diverse, ranging from 64 × 64 to 8 × 8.
Note that the maximal CTU sizes can be extended to be larger
than 64 × 64, e.g., 128 × 128.

As we know, the sizes of the CUs in each CTU are deter-
mined using a brute-force RDO search, which includes a top-
down checking process and a bottom-up comparison process.
Fig. 1 illustrates the RD cost checking and comparison
between a parent CU and its sub-CUs. In the checking process,
the encoder checks the RD cost of the whole CTU, followed by
checking its sub-CUs, until reaching the minimum CU size.
In Fig. 1, the RD cost of a parent CU is denoted as Rpa,
and the RD costs of its sub-CUs are denoted as Rsub

m , where
m ∈ {1, 2, 3, 4} is the index of each sub-CU. Afterwards, based
on the RD costs of CUs and sub-CUs, the comparison process
is conducted to determine whether a parent CU should be split.
As shown in Fig. 1 (b), if

∑4
m=1 Rsub

m < Rpa, the parent CU
needs to be split; otherwise, it is not split. Note that the RD
cost of the split flag is also considered when deciding whether
to split the CU. After the full RDO search, the CU partition
with the minimum RD cost is selected.

It is worth noting that the RDO search is extremely
time-consuming, mainly attributed to the recursive checking
process. In a 64 × 64 CTU, 85 possible CUs are checked,
including 1, 4, 42 and 43 CUs with sizes of 64 × 64, 32 × 32,
16 × 16 and 8 × 8. To check the RD cost of each CU,
the encoder needs to execute pre-coding for the CU, in which
the possible prediction and transformation modes have to be
encoded. More importantly, the pre-coding has to be conducted
for all 85 possible CUs in the standard HEVC, consuming
the largest proportion of the encoding time. However, in the
final CU partition, only certain CUs are selected, from 1 (if
the 64 × 64 CU is not split) to 64 (if the whole CTU is
split into 8 × 8 CUs). Therefore, the pre-coding of 84 CUs
(i.e., 85-1) at most and 21 CUs (i.e., 85-64) at least can be
avoided through the accurate prediction of the CU partition.

B. Database Establishment for Intra-Mode

In this section, we present our large-scale database for
the CU Partition of HEVC at Intra-mode: the CPH-Intra
database. To the best of our knowledge, our database is
the first database on the CU partition patterns. To estab-
lish the CPH-Intra database, 2000 images at resolution
4928 × 3264 were selected from the Raw Images Dataset
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TABLE I

CONFIGURATION OF PROPOSED ETH-CNN

(RAISE) [35]. These 2000 images were randomly divided
into training (1700 images), validation (100 images) and test
(200 images) sets. Furthermore, each set was equally divided
into four subsets: one subset was with original resolution, and
the other three sets were down-sampled to 2880 × 1920,
1536 × 1024 and 768 × 512. As such, our CPH-Intra
database contains images at different resolutions. This ensures
sufficient and diverse training data for learning to predict the
CU partition.

Next, all images were encoded by the HEVC reference
software HM 16.5 [3]. Here, four QPs {22, 27, 32, 37} were
applied to encode at the All-Intra (AI) configuration with the
file encoder_intra_main.cfg [36]. After encoding, the binary
labels indicating splitting (=1) and non-splitting (=0) can be
obtained for all CUs, and each CU with its corresponding
binary label is a sample in our database. Finally, there are
110,405,784 samples collected in the CPH-Intra database.
These samples are split into 12 sub-databases according to
their QP value and CU size, as reported in Table I-(a) of
the Supporting Document. As shown in this table, the total
percentage of split CUs (49.2%) is close to that of non-split
CUs (50.8%) over the whole database.

C. Database Establishment for Inter-Mode

We further establish a database for the CU Partition of
HEVC at Inter-mode: the CPH-Inter database. For estab-
lishing the CPH-Inter database, 111 raw video sequences
were selected, therein consisting of 6 sequences at 1080p
(1920 × 1080) from [37], 18 sequences of Classes A ∼ E
from the Joint Collaborative Team on Video Coding (JCT-VC)
standard test set [38], and 87 sequences from Xiph.org [39] at
different resolutions. As a result, our CPH-Inter database con-
tains video sequences at various resolutions: SIF (352 × 240),
CIF (352 × 288), NTSC (720 × 486), 4CIF (704 × 576), 240p
(416 × 240), 480p (832 × 480), 720p (1280 × 720), 1080p,
WQXGA (2560 × 1600) and 4K (4096 × 2160). Note that the
NTSC sequences were cropped to 720 × 480 by removing the
bottom edges of the frames, considering that only resolutions
in multiples of 8 × 8 are supported. Moreover, if the durations
of the sequences are longer than 10 seconds, they were clipped
to be 10 seconds.

Fig. 2. Illustration of three-level CU classifier.

In our CPH-Inter database, all the above sequences
were divided into non-overlapping training (83 sequences),
validation (10 sequences) and test (18 sequences) sets.
For the test set, all 18 sequences from the JCT-VC
set [38] were selected. Similar to the CPH-Intra database,
all sequences in our CPH-Inter database were encoded
by HM 16.5 [3] at four QPs {22, 27, 32, 37}. They
were compressed with the Low Delay P (LDP) (using
encoder_lowdelay_P_main.cfg), the Low Delay B (LDB)
(using encoder_lowdelay_main.cfg) and the Random Access
(RA) (using encoder_randomaccess_main.cfg) configurations,
respectively. Consequently, 12 sub-databases were obtained
for each configuration, corresponding to different QPs
and CU sizes. As reported in Table I-(b), -(c) and -(d)
of the Supporting Document, totally 307,831,288 samples
were collected for the LDP configuration in our CPH-Inter
database. Besides, 275,163,224 and 232,095,164 samples
were collected in total in our database for the LDB and RA
configurations, respectively.

IV. COMPLEXITY REDUCTION FOR INTRA-MODE HEVC

A. Hierarchical CU Partition Map

According to the CU partition structure in HEVC, four
different CU sizes are supported by default, i.e., 64 × 64,
32 × 32, 16 × 16 and 8 × 8, corresponding to four CU depths,
0, 1, 2 and 3. Note that a CU of size ≥ 16 × 16 can be
either split or not split. As illustrated in Fig. 2, the overall CU
partition can be regarded as a combination of binary labels
{yl}3

l=1 at three levels, where l ∈ {1, 2, 3} represents the level
on which the split decision is made. In particular, l = 1
indicates the first level, which determines whether to split a
64 × 64 CU into 32 × 32 CUs. Similarly, l = 2 is the second
level to decide whether a 32×32 CU is split into 16×16 CUs,
and l = 3 is for 16 × 16 into 8 × 8.

Given a CTU, we assume that the CU of depth 0 is denoted
as U. For U, the first-level label y1(U) indicates whether U
is split (= 1) or not (= 0). If U is split, its sub-CUs of
depth 1 are denoted as {Ui }4

i=1. Then, the second-level labels
{y2(Ui )}4

i=1 denote whether {Ui }4
i=1 are split (= 1) or not

(= 0). For each split Ui , its sub-CUs of depth 2 are represented
by {Ui, j }4

j=1. Similarly, the labels {y3(Ui, j )}4
i, j=1 denote the

split labels of {Ui, j }4
i, j=1 at the third level, and for each split

Ui, j , its sub-CUs of depth 3 are {Ui, j,k}4
k=1. The subscripts

i, j, k ∈ {1, 2, 3, 4} are the indices of the sub-CUs split from
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Fig. 3. An example of HCPM. (a) The ground-truth of HCPM for CU
splitting. (b) Modeling HCPM for prediction the CU splitting.

U, Ui and Ui, j , respectively. The above hierarchical labels for
the CU split are represented by the downward arrows in Fig. 2.
The overall CU partition in a CTU is extremely complex,
due to the large number of possible pattern combinations. For
example, for a 64 × 64 U, if y1(U) = 1, it will be split into
four 32 × 32 CUs, i.e., {Ui }4

i=1. Since for each Ui there exist
1 + 24 = 17 splitting patterns in {Ui, j }4

j=1, the total number
of splitting patterns for U is 1 + 174 = 83522.

In HEVC, the labels {yl}3
l=1 are obtained with the time-

consuming RDO process, as mentioned in Section III-A. They
can be predicted at a much faster speed by machine learning.
However, due to the enormous patterns of the CU partition
(83,522 patterns, as discussed above), it is intractable to predict
the CU partition patterns by a simple multi-class classifi-
cation in one step. Instead, the prediction should be made
step by step in a hierarchy to yield ŷ1(U), {ŷ2(Ui )}4

i=1 and
{ŷ3(Ui, j )}4

i, j=1, which denote the predicted y1(U), {y2(Ui )}4
i=1

and {y3(Ui, j )}4
i, j=1, respectively.

In typical machine learning based methods [8], [9], [24],
[25], the binary labels ŷ1(U), {ŷ2(Ui )}4

i=1 and {ŷ3(Ui, j )}4
i, j=1

are predicted separately for CUs of size 64 × 64, 32 × 32
and 16 × 16. To determine the CU partition for an entire
CTU, the trained model needs to be invoked multiple times,
leading to repetitive computation overhead. To overcome such
a drawback, we develop an HCPM to efficiently represent CU
splitting as the structured output of machine learning, such
that the training model is run only once for predicting the
partition of the whole CTU. This way, the computational time
of determining the CU partition can be dramatically reduced.
In addition, the encoding complexity can be decreased remark-
ably by bypassing the redundant RD cost checking in the
conventional HEVC standard.

Fig. 3 shows an example of HCPM, which arranges the
labels of the CU splitting as the structured output in a
hierarchy. Specifically, HCPM hierarchically contains 1 × 1,
2×2 and 4×4 binary labels at levels 1, 2 and 3, respectively,
corresponding to y1(U), {y2(Ui )}4

i=1 and {y3(Ui, j )}4
i, j=1 for

ground-truth and ŷ1(U), {ŷ2(Ui )}4
i=1 and {ŷ3(Ui, j )}4

i, j=1 for
prediction, respectively. Note that when U or Ui is not split,
the corresponding sub-CUs {Ui }4

i=1 or {Ui, j }4
j=1 do not exist.

Accordingly, the labels of {y2(Ui )}4
i=1 or {y3(Ui, j )}4

j=1 are set
to be null, denoted as “-” in the HCPM.

B. ETH-CNN Structure for Learning HCPM

Next, a deep ETH-CNN structure is developed to learn
HCPM for predicting the CU partition of intra-mode HEVC.

According to the mechanism of the CU partition, the
ETH-CNN structure is designed in Fig. 4. We can see from
this figure that ETH-CNN is fed with an entire CTU, denoted
by U, and is able to hierarchically generate three branches
of structured output, representing all predictions ŷ1(U),
{ŷ2(Ui )}4

i=1 and {ŷ3(Ui, j )}4
i, j=1 of HCPM at three levels. Note

that the input CTU is extracted from raw images or sequences
in YUV format, and only the Y channel is used in ETH-CNN
as this channel contains most visual information. In contrast
to the conventional CNN structure, the mechanism of early
termination is introduced in ETH-CNN, which may early
terminate the three fully connected layers at the second and
third branches. In addition to the three fully connected layers,
the ETH-CNN structure is composed of two preprocessing
layers, three convolutional layers, and one concatenating layer.
In the following, we briefly present the details of these layers.

• Preprocessing layers. The raw CTU is preprocessed
by mean removal and down-sampling in three parallel
branches {Bl}3

l=1, corresponding to three levels of HCPM.
Fig. 4 denotes mean removal and down-sampling by
{Nl }3

l=1 and {Sl}3
l=1, respectively. For mean removal,

at each branch, the input CTUs are subtracted by the
mean intensity values to reduce the variation of the input
CTU samples. Specifically, at branch B1, the mean value
of U is removed in accordance with the single output
of ŷ1(U) at the first level of HCPM. At branch B2,
four CUs {Ui }4

i=1 are subtracted by their corresponding
mean values, matching the 2 × 2 output of {ŷ2(Ui )}4

i=1
at the second level of HCPM. Similarly, {Ui, j }4

i, j=1 at
B3 also remove the mean values in each CU for the
4 × 4 output {ŷ3(Ui, j )}4

i, j=1 at the third level of HCPM.
Next, because CTUs of smaller depths generally possess
a smooth texture, U and {Ui }4

i=1 at branches B1 and B2
are down-sampled to 16 × 16 and 32 × 32, respectively.
This way, the outputs of the three-layer convolutions at
branches B1 and B2 are with the same sizes of HCPM at
levels 1 and 2, i.e., 1 × 1 at level 1 and 2 × 2 at level 2.

• Convolutional layers. In each branch Bl , all pre-
processed data flow through three convolutional layers.
At each convolutional layer, the kernel sizes are the
same across different branches. Specifically, the data are
convoluted with 4 × 4 kernels (16 filters in total) at the
first convolutional layer to extract the low-level features
{C1−l}3

l=1 for the CU partition. Recall that l denotes the
level of the CU partition. At the second and third layers,
feature maps are sequentially convoluted twice with 2×2
kernels (24 filters for the second layer and 32 filters for
the third layer) to generate features at a higher level,
denoted by {C2−l}3

l=1 and {C3−l}3
l=1, respectively. We

set the strides of all the above convolutions equal to the
widths of the corresponding kernels for non-overlap con-
volutions, in accordance with non-overlap CU splitting.

• Concatenating layer. All feature maps at three branches,
yielded from the second and third convolutional layers,
are concatenated together and then flattened into a vec-
tor a. As shown in Fig. 4, the vectorized features of the
concatenating layer are gathered from 6 sources of feature
maps in total, i.e., {C2−l}3

l=1 and {C3−l}3
l=1, to obtain a

variety of both global and local features. With the whole
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Fig. 4. Structure of ETH-CNN. For preprocessing and convolution, the size of the output at each layer is shown in black font, and the blue font indicates
the kernel size for convolution. At concatenation and fully connected layers, the number inside each bracket represents the vector length.

concatenating vector, features generated from the whole
CTU are all considered in the following fully connected
layers, rather than those only from the CUs in one branch,
to predict the CU partition of HCPM at each single level.

• Fully connected layers. Next, all features in the con-
catenated vector are processed in three branches {Bl}3

l=1,
also corresponding to three levels of HCPM. In each
branch, the vectorized features of the concatenating layer
pass through three fully connected layers, including two
hidden layers and one output layer. The two hidden fully
connected layers successively generate feature vectors
{f1−l}3

l=1, and the output layer produces HCPM as the
output of ETH-CNN. The numbers of features at these
layers vary with respect to l, so that the outputs have
1, 4 and 16 elements in B1, B2 and B3, serving as the
predicted binary labels of HCPM at the three levels shown
in Fig. 3 (b), i.e., ŷ1(U) in 1×1, {ŷ2(Ui )}4

i=1 in 2×2 and
{ŷ3(Ui, j )}4

i, j=1 in 4 ×4. Moreover, QP also has a signifi-
cant influence on the CU partition. As QP decreases, more
CUs tend to be split, and vice versa. Therefore, QP is
supplemented as an external feature in the feature vectors
{f1−l}3

l=1 for the full connection, enabling ETH-CNN to
be adaptive to various QPs in predicting HCPM. In ETH-
CNN, the early termination may result in the calculation
of the fully connected layers at levels 2 and 3 being
skipped, thus saving computation time. Specifically, if U
is decided not to be split at level 1, the calculation of
{ŷ2(Ui )}4

i=1 of HCPM is terminated early at level 2. If
{Ui }4

i=1 are all not split, the {ŷ3(Ui, j , t)}4
i, j=1 at level 3 do

not need to be calculated for the early termination.
• Other layers. During the training phase, after the first

and second fully connected layers, features are randomly
dropped out [40] with probabilities of 50% and 20%,
respectively. It is worth mentioning that all convolutional
layers and hidden fully connected layers are activated
with rectified linear units (ReLU) [41]. Moreover, all the
output layers in {Bl}3

l=1 are activated with the sigmoid
function, since all the labels in HCPM are binary.

The specific configuration of the ETH-CNN structure is pre-
sented in Table I, which lists the numbers of trainable parame-
ters for obtaining different feature maps and vectors. We can
see from this table that there are in total 1,287,189 trainable
parameters for ETH-CNN. Thus, the ETH-CNN structure
provides a much higher learning capacity, in comparison to

the only 1,224 trainable parameters in [9], which may cause
under-fitting issues. Such abundant trainable parameters also
benefit from the extensive training samples of our CPH-Intra
database (see Table I-(a) of the Supporting Document for
the number of training samples). Another major merit is that
all structured labels of HCPM are learned in the ETH-CNN
model with shared parameters, to predict y1(U), {y2(Ui )}4

i=1
and {y3(Ui, j )}4

i, j=1. This design efficiently reduces the overall
computational complexity for predicting the CU partition,
compared with conventional learning-based approaches [8],
[9], [24], [25] that sequentially predict splitting labels from
64 × 64 CU partition to 16 × 16 CU partition.

C. Loss Function for Training ETH-CNN Model

Given the above ETH-CNN structure, we concentrate on
the loss function for training the ETH-CNN model, which
is used to predict HCPM. Assume that there are R training
samples, the HCPM labels of which are {yr

1(U), {yr
2(Ui )}4

i=1
and {yr

3(Ui, j )}4
i, j=1}R

r=1. For each sample, the loss function Lr
sums the cross-entropy over all valid elements of HCPM as
follows:

Lr = H (yr
1(U), ŷr

1(U)) +
∑

i∈{1,2,3,4}
yr

2(Ui ) �=null

H (yr
2(Ui ), ŷr

2(Ui ))

+
∑

i, j∈{1,2,3,4}
yr

3(Ui, j ) �=null

H (yr
3(Ui, j ), ŷr

3(Ui, j )), (1)

where {ŷr
1(U), {ŷr

2(Ui )}4
i=1 and {ŷr

3(Ui, j )}4
i, j=1}R

r=1 are the
labels of HCPM predicted by ETH-CNN. In (1), H (·, ·)
denotes the cross-entropy between the ground-truth and pre-
dicted labels. Considering that some ground-truth labels in
HCPM do not exist (such as {y3(U2, j )}4

j=1 in Fig. 3), only
valid labels with yr

2(Ui ) �= null and yr
3(Ui, j ) �= null are

counted in the loss of (1).
Then, the ETH-CNN model can be trained by optimizing

the loss function over all training samples:

L = 1

R

R∑

r=1

Lr . (2)

Because the loss function of (1) and (2) is the sum of the
cross-entropies, the stochastic gradient descent algorithm with
momentum is applied to train the ETH-CNN model. Finally,
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the trained ETH-CNN model can be used to predict the CU
partition of HEVC in the form of HCPM.

D. Bi-Threshold Decision Scheme

Given an input CTU, ETH-CNN yields the probabilities for
the binary labels of ŷ1(U), ŷ2(Ui ) and ŷ3(Ui, j ), to predict
the CU partition. Let P1(U), P2(Ui ) and P3(Ui, j ) denote the
probabilities of ŷ1(U) = 1, ŷ2(Ui ) = 1 and ŷ3(Ui, j ) = 1.
Typically, one decision threshold αl (= 0.5 in this paper) is set
for each level l of HCPM. Specifically, a CU with P1(U) > α1
is decided as being split into four CUs {Ui }4

i=1; otherwise,
it is not split. Similarly, P2(Ui ) > α2 and P3(Ui, j ) > α3
make a positive decision on the splitting of Ui and Ui, j . This
remarkably reduces the encoding complexity by avoiding all
redundant RD cost comparison.

On the other hand, a false prediction of y1(U),
y2(Ui ) or y3(Ui, j ) leads to RD degradation, as the optimal
RD performance is not achieved. To ameliorate this issue,
we adopt a bi-threshold CU decision scheme [11]. For each
level of HCPM, a splitting threshold αl and a non-splitting
threshold ᾱl are set (ᾱl ≤ αl ). Then, the false prediction rate of
the ground-truth labels is reduced by introducing an uncertain
zone [ᾱl, αl ], where a parent CU (e.g., U, Ui or Ui, j ) and
its four sub-CUs are all checked with the RD cost. Generally
speaking, if the uncertain zone becomes wider, more CUs tend
to be checked, such that the encoding complexity is increased
with decreased misclassification of the CU splitting. Therefore,
a trade-off between RD performance and encoding complexity
can be achieved through the bi-threshold of [ᾱl , αl ].

The optimal thresholds of the uncertain zone [ᾱl , αl ] can
be obtained by traversing the combinations of {[ᾱl , αl ]}3

l=1
to reduce the encoding complexity as much as possible at
the constraint of the RD degradation. However, in practice,
both complexity reduction and RD degradation vary in a large
extent because of different encoding requirements and diverse
video contents. Thus, it is hard to find one specific threshold
combination of {[ᾱl , αl ]}3

l=1 fitting all encoding requirements
and video sequences. Instead, for the better complexity-
RD (CRD) performance, our bi-threshold scheme follows [8]
on account of the setting that the uncertain zones of the CU
partition at lower levels should be narrower. Similar to [8],
when the RD degradation is constrained in complexity reduc-
tion, the uncertain zones at lower levels of the CU partition
in our approach are supposed to be narrower, i.e., [ᾱ1, α1] ⊂
[ᾱ2, α2] ⊂ [ᾱ3, α3]. In addition,the upper and lower thresholds
of our bi-threshold scheme are set based on an assumption
that the upper and lower thresholds are symmetric with regard
to 0.5, i.e., ᾱl = 1 − αl for each level l. Note that 0.5 is a
widely used threshold for the conventional binary classification
problems. Given this assumption, the settings of thresholds can
be simplified from six variables to three variables for achieving
the CRD trade-off. Moreover, this assumption is reasonable,
because the symmetry of the upper and lower thresholds at
0.5 balances the prediction accuracy for both split and non-
split CUs.

E. Computational Complexity of ETH-CNN

In this section, we analyze the time complexity of ETH-
CNN via counting the number of floating-point operations,

including additions and multiplications. Note that all floating-
point operations in ETH-CNN are in single precision (32-bit).
The last two columns of Table I report the numbers of floating-
point operations for each layer of ETH-CNN and the total
number of floating-point operations required in ETH-CNN.
We can see that ETH-CNN performs a total of 3.05 × 106

floating-point operations, including 1,497,584 additions
and 1,552,149 multiplications. ETH-CNN performs fewer
floating-point operations than Alex-Net (∼ 3 × 109 floating-
point operations) or VGG-Net (∼ 4 × 1010 floating-point
operations) by at least three orders of magnitude.

In Table I, early termination is not considered for counting
the total number of floating-point operations of ETH-CNN.
In practical compression, the early termination of ETH-CNN
can further reduce the time complexity. Here, we record the
average number of floating-point operations of ETH-CNN,
when compressing 18 standard JCT-VC sequences [38] at
intra-mode and QP = 32. We find that 12.6% floating-
point operations can be saved due to the early termination
mechanism in ETH-CNN. Consequently, for compressing
1080p@30 Hz sequences, our approach requires ∼ 40.8 G
single-precision floating-point operations per second (FLOPS)
for intra-mode HEVC complexity reduction. The FLOPS of
our approach is far less than the computational capacity of an
Intel(R) Core(TM) i7-7700K CPU @4.2 GHz, which supports
∼ 287.9 G double-precision FLOPS, as reported in [42]. In
the Supporting Document, time complexity of our approach
on field programmable gate array (FPGA) implementation is
also analyzed. As analyzed, ETH-CNN only consumes less
than 3 ms for one frame of 1080p sequences in the FPGA of
Virtex UltraScale+ VU13P.

V. COMPLEXITY REDUCTION FOR INTER-MODE HEVC

In this section, we first analyze the temporal correlation
of the CU depth in inter-mode HEVC. Based on our analy-
sis, we then propose to predict the CU partition of inter-
mode HEVC, via designing the ETH-LSTM network. Finally,
the computational complexity of ETH-LSTM is analyzed.

A. Analysis on Temporal Correlation of CU Depth

Typically, the adjacent video frames exhibit similarity in
video content, and such similarity decays as the temporal dis-
tance of two adjacent frames increases. The same phenomenon
may also hold for the CU partition of inter-mode HEVC. Fig. 5
shows examples of the CU partition across adjacent frames
with different temporal distances. In this figure, we consider
the first column as the reference. Then, the CU partition of
subsequent frames with different distances is compared to the
reference. In each CU, we highlight the same CU depth in
red. We can see from Fig. 5 that there exists high similarity in
the CU partition across neighboring frames, and the similarity
drops along with increasing temporal distance.

We further measure the similarity of the CU partition in
inter-mode HEVC over all 93 sequences in the training and
validation sets of our CPH-Inter database. Specifically, we cal-
culate the correlation of the CU depth between two frames at
various distances, ranging from 1 group of pictures (GOP) to
25 GOPs. Such correlation is measured between co-located
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Fig. 5. Two examples illustrating temporal CU partition correlation. Red patches represent CUs of the same depths as in the reference frame.

Fig. 6. Temporal CU depth correlation versus distances of two frames for
inter-mode HEVC at four QP values. Left: Correlation coefficient. Right:
Mean squared error.

units1 from two frames in terms of the linear correlation coef-
ficient (CC) and mean squared error (MSE). In our analysis,
the results for the CC and MSE are averaged over all frames
of 93 sequences, which are shown in Fig. 6 for four QPs
(QP = 22, 27, 32 and 37).

We can see from Fig. 6 that CC is always much larger
than 0, indicating the existence of a positive correlation on
the temporal CU depth. Moreover, the CC decreases alongside
increasing distance between two frames. Similar results hold
for MSE, as can be found in Fig. 6. Therefore, Fig. 6 implies
that there exist long- and short-term dependencies of the CU
partition across adjacent frames for inter-mode HEVC.

1Non-overlapping units with sizes of 64 × 64, 32 × 32 and 16 × 16 are
considered, corresponding to splitting depths of 0, 1 and 2. Note that 8 × 8
units are not measured, as an 8 × 8 CU is definitely split from a larger CU.

Fig. 7. Framework of ETH-LSTM. The number in each bracket is the
dimension of the vector.

B. Deep LSTM Structure

As analyzed in Section V-A, the CU partition of neighboring
frames is correlated with each other. Thus, this section pro-
poses the ETH-LSTM approach, which learns the long- and
short-term dependencies of the CU partition across frames.
Fig. 7 illustrates the overall framework of ETH-LSTM. As
observed in Fig. 7, the input to ETH-LSTM is the residue
of each CTU. Here, the residue is obtained by precoding
the currently processed frame, in which both the CU and
PU sizes are forced to be 64×64. It is worth mentioning
that the computational time for precoding consumes less than
3% of the total encoding time, which is considered in our
approach as time overhead. Then, the residual CTU is fed
into ETH-CNN. For inter-frames, the parameters of ETH-CNN
are re-trained over the residue and ground-truth splitting of the
training CTUs from the CPH-Inter database. Next, the features
{f1−l}3

l=1 of ETH-CNN are extracted for frame t , and these
features are then fed into ETH-LSTM. Recall that {f1−l}3

l=1
are the features at Layer 7 of ETH-CNN.



5052 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 27, NO. 10, OCTOBER 2018

Fig. 7 shows that three LSTMs in ETH-LSTM are arranged
in a hierarchy for determining the CU depths in the form
of HCPM. Specifically, the LSTM cells are at levels 1,
2 and 3, corresponding to three levels of HCPM: ŷ1(U, t),
{ŷ2(Ui , t)}4

i=1 and {ŷ3(Ui, j , t)}4
i, j=1. Here, ŷ1(U, t) indicates

whether the CU U (size: 64 × 64, depth = 0 ) at frame t
is split. Similarly, {ŷ2(Ui , t)}4

i=1 and {ŷ3(Ui, j , t)}4
i, j=1 denote

the splitting labels of CUs Ui (size: 32 × 32, depth = 1)
and Ui, j (size: 16 × 16, depth = 2). At each level, two fully
connected layers follow the LSTM cells, which also include
the QP value and the order of frame t at GOP. Note that the
frame order is represented by a one-hot vector. For level l
at frame t , we denote f ′

1−l(t) and f ′
2−l(t) as the output

features of the LSTM cell and the first fully connected layer.
Additionally, the output of the second fully connected layer
is the probabilities of CU splitting, which are binarized to
predict HCPM.2 However, if the LSTM cell at level 1 decides
not to split, the calculation of {ŷ2(Ui , t)}4

i=1 of HCPM is
terminated early at level 2, via skipping its two fully connected
layers. Instead, all indices of {ŷ2(Ui , t)}4

i=1 are set to be 0,
meaning that the CU depths at level 2 are 0. The calculation of
{ŷ3(Ui, j , t)}4

i, j=1 at level 3 is also terminated early in a similar
manner. Consequently, early termination is able to reduce
the computational time of ETH-LSTM. Finally, the results
of HCPM are output by ETH-LSTM, therein predicting the
partition patterns of a CTU at frame t .

When determining the HCPM of each CTU, the partition
patterns of the CTUs co-located at the previous frames can
be considered in ETH-LSTM. ETH-LSTM learns the long-
and short-term correlations of CU depths across frames, via
incorporating the LSTM cells at different levels. For learning
ETH-LSTM, each LSTM cell is trained separately using its
corresponding CUs. Next, we introduce the learning mecha-
nism of ETH-LSTM by taking the LSTM cell of frame t at
level l as an example. Such an LSTM cell works with three
gates: the input gate il(t), the output gate ol(t) and the forget
gate gl(t). Given the input ETH-CNN feature f1−l(t) and the
output feature f ′

1−l(t − 1) of the LSTM cell at the last frame,
these three gates can be obtained by

⎧
⎪⎨

⎪⎩

il(t) = σ(Wi · [f1−l(t), f ′
1−l(t − 1)] + bi )

ol(t) = σ(Wo · [f1−l(t), f ′
1−l(t − 1)] + bo)

gl(t) = σ(W f · [f1−l(t), f ′
1−l(t − 1)] + b f )

(3)

where σ(·) stands for the sigmoid function. In the above
equations, Wi , Wo, W f are trainable parameters for three
gates, and bi , bo and b f are their biases. With these three
gates, the LSTM cell updates its state at frame t as

cl(t) = il(t) 
 tanh(Wc 
 [f1−l(t), f ′
1−l(t − 1)] + bc)

+ gl(t) 
 cl(t − 1), (4)

where 
 represents element-wise multiplication. In (4),
Wc and bc are parameters and biases for cl(t), which need
to be trained. Finally, the output of the LSTM cell f ′

1−l(t)
can be calculated as follows:

f ′
1−l(t) = ol(t) 
 cl(t). (5)

2The binarization process is the same as that of ETH-CNN in Section IV-B.
The bi-threshold decision scheme of Section IV-D can also be applied for the
binarization process to achieve a trade-off between prediction accuracy and
complexity reduction.

TABLE II

CONFIGURATION OF ETH-LSTM

Note that both cl(t) and f ′
1−l(t) are vectors with the same

length as f1−l(t).
The configuration of ETH-LSTM with all trainable para-

meters is listed in Table II. For training the parameters of
the LSTM cells in the above equations, the cross-entropy is
applied as the loss function, the same as that for ETH-CNN
defined in (1). Let Lr (t) be the loss for the r -th training CU
sample at frame t . Then, each LSTM cell among the three
levels of ETH-LSTM can be trained by optimizing the loss
over all R training samples alongside T frames,

L = 1

RT

R∑

r=1

T∑

t=1

Lr (t), (6)

which is solved by the stochastic gradient descent algorithm
with momentum. Finally, given the trained LSTM cells,
ETH-LSTM can be used to generate HCPM for predicting
the CU partition at the inter-frames.

C. Computational Complexity of ETH-LSTM

As shown in the last two columns of Table II, there are
in total 757,118 additions and 759,273 multiplications for
ETH-LSTM, almost half of those for ETH-CNN. With the
early termination, the total number of floating-point operations
in Table II can be further reduced by 4.3% when running
ETH-LSTM for compressing 18 standard JCT-VC sequences
at QP = 32 (the inter-mode configuration is the same as that
in the section of experimental results ). Because ETH-LSTM
requires the extracted features of ETH-CNN as the input, our
complexity reduction approach consumes in total 4.37 × 106

single-precision floating-point operations for a CTU. In other
words, our approach consumes 66.9 G single-precision FLOPS
for 1080p@30 Hz sequences, much less than the 287.9 G
double-precision FLOPS for an Intel(R) Core(TM) i7-7700K
CPU @4.2 GHz. As analyzed in the Supporting Document,
our approach requires less than 3 ms/frame running time in
the FPGA device of Virtex UltraScale+ VU13P.

VI. EXPERIMENTAL RESULTS

In this section, we present experimental results to validate
the effectiveness of our approach in reducing HEVC
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complexity at both intra- and inter-modes. For evaluating
performance at intra-mode, we compare our approach with
two state-of-the-art approaches: the SVM based approach [8]
and the CNN based approach [9]. For evaluating performance
at inter-mode, we compare our approach to the latest
approaches of [8], [7] and [10]. In Section VI-A, we discuss
the configuration of the experiments and the settings of our
approach. In Sections VI-B and VI-C, we compare the
performance of our and other approaches for intra- and inter-
mode HEVC, respectively. Finally, Section VI-D analyzes the
running time of our complexity reduction approach.

A. Configuration and Settings

1) Configuration of Experiments: In our experiments, all
complexity reduction approaches were implemented in the
HEVC reference software HM 16.5 [3]. In HM 16.5, the AI
configuration was applied with the default configuration file
encoder_intra_main.cfg [36] for the performance evaluation
at intra-mode, and the LDP configuration was used with the
default configuration file encoder_low_delay_P_main.cfg [36]
for the performance evaluation at inter-mode. Here, four
QP values, {22, 27, 32, 37}, were chosen to compress the
images and video sequences. At both intra- and inter-modes,
our experiments were tested on 18 video sequences of
the JCT-VC standard test set [38]. Moreover, all 200 test
images from the CPH-Intra database were evaluated for
intra-mode HEVC complexity reduction. In our experiments,
the Bjøntegaard delta bit-rate (BD-BR) and Bjøntegaard
delta PSNR (BD-PSNR) [43] were measured to assess
the RD performance. Additionally, �T , which denotes
the encoding time-saving rate over the original HM, was
used to measure the complexity reduction. All experiments
were conducted on a computer with an Intel(R) Core (TM)
i7-7700K CPU @4.2 GHz, 16 GB RAM and the Windows 10
Enterprise 64-bit operating system. Note that a GeForce GTX
1080 GPU was used to accelerate the training speed, but it
was disabled when testing the HEVC complexity reduction.

2) Training Settings: In our complexity reduction approach,
two ETH-CNN models were trained from the training sets
of the CPH-Intra and CPH-Inter databases, corresponding
to intra- and inter-mode HEVC, respectively. In addition,
one ETH-LSTM model was trained from the training set of
the CPH-Inter database. In training these models, the hyper-
parameters were tuned on the validation sets of the CPH-Intra
and CPH-Inter databases. Specifically, all trainable parameters
in ETH-CNN and ETH-LSTM were randomly initialized,
obeying the truncated normal distribution with zero mean
and standard deviation of 0.1. The batch size R for train-
ing was 64, and the momentum of the stochastic gradient
descent algorithm was set to 0.9. To train the ETH-CNN
models, the initial learning rate was 0.01 and decreased by
1% exponentially every 2,000 iterations, and there were in
total 1,000,000 iterations. To train ETH-LSTM, the initial
learning rate was 0.1 and decreased by 1% exponentially
every 200 iterations, and the total number of iterations was
200,000. The length of the trained ETH-LSTM model was
T = 20. Moreover, at the LDP configuration, the overlapping
of 10 frames was applied to generate the training samples of

Fig. 8. Training loss alongside iterations when learning the models of ETH-
CNN at intra-mode, ETH-CNN at inter-mode and ETH-LSTM. Note that the
training loss of intra-mode ETH-CNN is over the training set of CPH-Intra
database, while the training loss of inter-mode ETH-CNN and ETH-LSTM is
over the training set of CPH-Inter database.

the ETH-LSTM model. Such overlapping was introduced to
enhance the diversity of the training samples and meanwhile
augment the training data.

3) Test Settings: For the test, T was set equal to the number
of P frames in the sequence, where the internal information
of ETH-LSTM can propagate throughout the whole sequence
to leverage the long- and short-term dependencies. Note that
ETH-LSTM is invoked step-wise during the test, i.e., the
hidden state and the output of frame t are calculated after the
processing of frame t − 1 is accomplished, instead of yielding
the output of all T frames at one time. For the bi-threshold
decision scheme, at intra-mode the values of the thresholds
were ᾱl = αl = 0.5 where l ∈ {1, 2, 3} is the CU depth.
It is because our approach is able to achieve sufficiently small
loss of RD performance at intra-mode and the bi-threshold
decision is not necessary. At inter-mode, we set [ᾱ1, α1] =
[0.4, 0.6], [ᾱ2, α2] = [0.3, 0.7] and [ᾱ3, α3] = [0.2, 0.8],
corresponding to the different CU depth of l ∈ {1, 2, 3}. Here,
we followed [8] to apply this bi-threshold setting, which can
efficiently enhance RD performance with desirable rate of
complexity reduction. The width of uncertain zone increases
along with increased level l of CU depth, since the smaller
CU depth tends to early bypass redundant checking of CUs
in RD optimization (RDO), which is achieved by a narrower
uncertain zone [ᾱl, αl ].

B. Performance Evaluation at Intra-Mode

1) Evaluation on Training Performance: When predicting
the CU partition of intra-mode HEVC, our approach relies on
the training model of ETH-CNN, which is optimized by (2)
over the training set. Therefore, it is necessary to evaluate the
training performance of our approach at intra-mode. Fig. 8-(a)
shows the training loss along with iterations during the model
training of ETH-CNN. Note that the training loss is obtained
through calculating (2) at each training iteration. We can see
from this figure that the loss converges after 5×105 iterations,
when training the ETH-CNN model at the AI configuration.

2) Evaluation on Prediction Accuracy: First, we evaluate
the accuracy of the CU partition predicted by our ETH-
CNN approach, when compressing images/sequences with
intra-mode HEVC. In our experiments, the accuracy is
averaged over the CU partition results of 200 test images and
18 test sequences, which are compressed by HM 16.5 at the
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TABLE III

RESULTS FOR IMAGES FROM OUR CPH-INTRA TEST SET (AI)

AI configuration and four QP values {22, 27, 32, 37}. We find
from the experimental results that the average accuracy
rates for predicting the intra-mode CU partition at levels
1, 2 and 3 iare 90.98%, 86.42% and 80.42%, respectively.
These accuracy rates are rather high, thus leading to a slight
loss of RD performance, as discussed below.

3) Comparison of Complexity Reduction: Next, we compare
our approach with [25] and [9] in complexity reduction,
when compressing images/sequences by HEVC at intra-mode.
Tables III and IV tabulate the complexity reduction results
in �T for 200 test images and 18 test sequences, respec-
tively. As observed in Table III, at QP = 22, 27, 32 and 37,
our approach reduces the encoding complexity by 64.01%,
66.09%, 68.11% and 70.52% on average, outperforming the
58.36%, 56.27%, 54.23% and 55.69% complexity reductions
in [25] and the 58.05%, 61.66%, 65.25% and 67.26% com-
plexity reductions in [9]. In addition, for most scenarios with
different QPs and sequences, our approach achieves a better
complexity reduction than the other two approaches. Note
that our ETH-CNN based approach requires less time than
the shallow CNN approach [9], because [9] requires an RDO
search for the decision on splitting from 64×64 to 32×32. Our
approach outperforms [25] and [9] in terms of maximal �T ,
for compressing the test images and video sequences with
intra-mode HEVC. More importantly, when applying our
approach and [9] in intra-mode compression of the test images
and video sequences, the standard deviations of �T are less
than 1

5 · |�T |, indicating the stability of both approaches in
complexity reduction. For video sequences, similar results can
be found in Table IV. From Tables III and IV, we can further
observe that the gap in the time reduction between our and
other approaches increases along with increasing QP. This is
most likely because the increased QP leads to more large CUs,
such that early termination in our ETH-CNN model works for
more CTUs, resulting in decreased running time. In summary,
our approach is capable of improving the time efficiency of
intra-mode HEVC.

4) Comparison of RD Performance: The reduced
complexity of intra-mode HEVC is at the expense of an RD
performance loss. Here, we compare the RD performance
of our and the other two approaches in terms of BD-BR
and BD-PSNR. Tables III and IV report the BD-BR and
BD-PSNR under the three approaches, with the original HM
as the anchor. We can see from these tables that the BD-BR

TABLE IV

RESULTS FOR SEQUENCES OF THE JCT-VC TEST SET (AI)

increase in our ETH-CNN approach is on average 1.386% for
images and 2.247% for sequences, which significantly out-
performs [25] (4.945% for images and 8.559% for sequences)
and [9] (2.353% for images and 6.189% for sequences).
In addition, our approach incurs −0.081 dB and −0.104 dB
BD-PSNR for images and sequences, respectively, which are
far better than the −0.284 dB and −0.419 dB of [25], and
the −0.155 dB and −0.316 dB of [9]. Our approach is also
superior to [25] and [9], in terms of both standard deviations
and best values of BD-BR and BD-PSNR. Thus, our approach
performs best among the three approaches in terms of RD
performance. The RD improvement of our approach is mainly
due to the high prediction accuracy of the CU partition,
benefiting from the deep ETH-CNN structure with sufficient
parameters learned from our large-scale CPH-Intra database.

5) Comparison of Complexity-RD Performance: As men-
tioned in Section IV-D, the bi-threshold scheme can control
the RD performance and encoding complexity. Therefore,
we changed the uncertain zone [ᾱl , αl ] of the bi-threshold
scheme to assess the complexity-RD (CRD) performance of
our approach. As mentioned in Section IV-D, [ᾱ1, α1] ⊂
[ᾱ2, α2] ⊂ [ᾱ3, α3] and ᾱl = 1 − αl exist for our bi-threshold
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Fig. 9. CRD performance for intra-mode HEVC complexity reduction. Left and middle: Complexity reduction and RD performance at different uncertain
zones. No that the labels on horizontal axes are upper thresholds {αl}3

l=1, and the corresponding lower thresholds are ᾱl = 1 − αl for l ∈ {1, 2, 3}. Right:
Comparison of CRD performance between both approaches.

scheme. Therefore, the specific values of {[ᾱl , αl ]}3
l=1 at each

level l are determined by power functions for simplicity:
{

αl = 0.5 + 0.5d2−0.5l

ᾱl = 0.5 − 0.5d2−0.5l l ∈ {1, 2, 3}, . (7)

where d ∈ [0, 1] is the width of the uncertain zone at level
l = 2. Specifically, Fig. 9-left and -middle show the results
of the encoding complexity reduction and RD performance
degradation at different uncertain zones by adjusting d , for
intra-mode HEVC. The results are averaged over the JCT-VC
test sequences at QP = 22, 27, 32, and 37. In this figure,
the encoding complexity reduction is measured by �T (i.e.,
encoding time saving) and the RD performance degrada-
tion is assessed by BD-PSNR. We can see from Fig. 9-left
and -middle that the absolute values of both �T and
BD-PSNR are increased when the uncertain zone of [ᾱl , αl ]
becomes narrower. This indicates that the trade-off between
the RD performance and encoding complexity can be con-
trolled by changing the uncertain zone [ᾱl , αl ]. In Fig. 9-right,
we also plot the CRD curves of our approach and the state-
of-the-art CNN based approach [9] by plotting the values of
�T and BD-PSNR, which are obtained at different uncertain
zones of [ᾱl , αl ]. This figure shows that the RD performance
is improved at less reduction of encoding complexity. This fig-
ure further shows that our approach achieves a better RD per-
formance than [9] at the same encoding complexity reduction.

C. Performance Evaluation at Inter-Mode

1) Evaluation on Training Performance: First, we evaluate
the training loss at different iterations when training the
ETH-CNN and ETH-LSTM models for inter-mode HEVC
complexity reduction. Fig. 8-(a) and -(b) illustrate the training
loss curves for ETH-CNN and ETH-LSTM, respectively.
Here, the loss values are obtained from (2) for training the
ETH-CNN model and from (6) for training the ETH-LSTM
model. We can see that both the ETH-CNN and LSTM
models converge at a fast speed. Additionally, at the LDP
configuration, the training loss of the ETH-LSTM model
converges to a smaller value in predicting the CU partition
of HEVC, compared with the ETH-CNN model.

2) Evaluation on Prediction Accuracy: First, we evaluate
the accuracy of the CU partition predicted by ETH-LSTM
when compressing 18 test sequences using HEVC at the LDP
configuration. The experimental results show that the average
accuracy rates of the inter-mode CU partition at three levels are
93.89%, 88.01% and 80.91%. These values are much higher

than the 90.21%, 82.62% and 79.42% of the three-level joint
SVM classifier reported in [8]. Moreover, the accuracy rates of
the inter-mode CU partition are higher than those of the intra-
mode CU partition in our deep learning approach (reported in
Section VI-B) because of the temporal correlation of the CU
partition learned in ETH-LSTM.

3) Evaluation on Complexity Reduction: Next, we com-
pare our approach with the latest work of [8], [7] and [10]
for encoding complexity reduction in inter-mode HEVC.
In Table V, �T illustrates the complexity reduction rates
of 18 test sequences. As seen in this table, at QP =
22, 27, 32 and 37, our approach can reduce the encod-
ing complexity by 43.84%, 52.13%, 57.89% and 62.94%
on average. Such complexity reduction rates are supe-
rior to the 38.31%, 46.10%, 48.95% and 46.50% of [8],
the 32.16%, 39.59%, 49.31% and 57.20% of [7], and the
43.67%, 43.10%, 43.54% and 43.98% of [10]. In addition, our
approach is able to reduce more complexity than the other
three approaches on most sequences under different QPs and
resolutions. This is mainly because our approach is able to
predict all the CU partition of an entire CTU at a time in
the form of HCPM, whereas the other approaches need to run
the classifier several times or to check the RDO of some CU
partition in splitting a CTU. We can further see from Table V
that our approach at the LDP configuration has the smallest
standard deviations of �T among all four approaches. This
implies that our approach is robust in reducing complexity of
inter-mode HEVC. However, the maximal complexity reduc-
tion of our approach is less than that of [7] for inter-mode
HEVC. Again, this implies the robustness of our approach in
complexity reduction of inter-mode HEVC, since our approach
has more average complexity reduction than [7].

4) Evaluation on RD Performance: In addition to complex-
ity reduction, RD performance is also a critical metric for eval-
uation. In our experiments, we compare RD performance of all
four approaches, in terms of BD-BR and BD-PSNR. Table V
tabulates BD-BR and BD-PSNR results of four approaches,
with the original HM as anchor. The BD-BR of our ETH-
LSTM approach is averagely 1.495%, better than 1.799%
of [8], 5.051% of [7] and 3.616% of [10]. On the other hand,
the BD-PSNR of our approach is −0.046 dB, which is superior
to −0.054dB of [8], −0.163dB of [7] and −0.108dB of [10].
Also, Table V shows that our approach is generally superior to
[8], [7] and [10] for both standard deviations and best values of
the RD loss (evaluated by BD-BR and BD-PSNR). Therefore,
our approach performs best in terms of RD, among all four
approaches. It is mainly attributed to the high accuracy of the
CU partition predicted by ETH-LSTM as discussed above.
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TABLE V

RESULTS FOR SEQUENCES OF THE JCT-VT TEST SET (LDP)

D. Analysis on Running Time

We analyze the running time of our deep learning approach
by comparing with that of the original HM 16.5 [3]. Fig. 10
shows the time percentages of running ETH-CNN and
ETH-CNN + ETH-LSTM relative to the original HM. It also
plots the time percentages of encoding with ETH-CNN
and ETH-CNN + ETH-LSTM, with the original HM as
an anchor. The number in blue font next to each bar
in Fig.10 indicates the absolute time3 of running ETH-CNN

3Note that only one thread of CPU is used for the above running time,
in accord with the HM platform that is also implemented in one thread.
If enabling the multi-thread parallelism of CPU, the running time can be
drastically reduced.

Fig. 10. Time percentages for running our deep learning models and encoding
videos/images by HM with our complexity reduction approach, with the
original HM 16.5 as an anchor. Note the number in blue font next to each bar
indicates the real running time of ETH-CNN and ETH-CNN + ETH-LSTM
(in millisecond) for one frame. (a) AI configuration. (b) LDP configuration.

TABLE VI

RESULTS FOR ABLATION STUDY

and ETH-CNN + ETH-LSTM (in millisecond) for one frame.
The results of Fig. 10 are obtained by averaging over all
test images/sequences with the same resolution at four QP
values {22, 27, 32, 37}. We can see from Fig. 10-(a) that
ETH-CNN consumes less than 1% of the time required by
the original HM. Moreover, ETH-CNN takes up a small
portion of time when compressing images/sequences by HM
with our complexity reduction approach. Hence, ETH-CNN4

introduces little time overhead in reducing the complexity of
intra-mode HEVC.

As seen in Fig. 10-(b), ETH-CNN and ETH-LSTM achieve
shorter running time compared with the encoding time of
the original HM at the LDP configuration. Note that the
time proportion of ETH-CNN and ETH-LSTM in inter-mode
HEVC is far less than that of ETH-CNN in intra-mode HEVC,
since inter-mode HEVC has a significantly longer encoding
time than intra-mode HEVC. Besides, Fig. 10-(b) shows that
the CU partition by our approach consumes relatively little
encoding time, when applying our deep learning approach for
complexity reduction in inter-mode HEVC.

E. Ablation Study

In this section, we conducted a series of ablation exper-
iments to analyze the impact of major components in the
proposed approach. In our ablation experiments, we started
from a simple CNN model and then added the components
stepwise, finally reaching the proposed approach. Table VI
reports the results of ablation experiments. Note that the
ablation results are averaged over all 18 test sequences. In the
following, we discuss these ablation results in details.

4Although running ETH-CNN requires little time for each video frame,
a huge amount of time is taken for training the ETH-CNN model, as it is
trained from large-scale data. This can be done off-line, making our ETH-
CNN practical for complexity reduction in HEVC.
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1) Deep CNN Structure vs. Shallow CNN Structure: In
our approach, a deep structure of CNN is developed, which
is significantly deeper than the shallow CNN structure in
the state-of-the-art HEVC complexity reduction approach [9].
Such a deep CNN structure has been presented in the con-
ference version [12] of this paper, and it has similar structure
and comparable amount of trainable parameters to our ETH-
CNN model. Therefore, we analyze the impact of the deep
structure in our approach by comparing the results between
[12] and [9]. As can be seen in Table VI, the deep CNN
structure improves the RD performance for intra-mode HEVC
complexity reduction, which has 3.940% BD-BR saving and
0.211dB BD-PSNR increase over the shallow structure of [9].

2) The ETH-CNN Model vs. the General Classification-
Oriented CNN Model: In the ETH-CNN model, the early-
terminated hierarchical (ETH) decision is proposed to predict
the CU partition, which replaces the conventional three-level
classification of [12]. In fact, [12] is the conference version
of this paper, in which three deep networks of the CNN
model are invoked to predict the three-level classification of
64 × 64, 32 × 32 and 16 × 16 CU partition, respectively.
Note that the CNN model of [12] has similar structure and
comparable amount of trainable parameters to our ETH-CNN
model. In our ablation experiments, we therefore compare the
results of the ETH-CNN model with those of the classification-
oriented CNN model [12], to investigate the impact of the
ETH decision. We can see from Table VI that the ETH-CNN
model can save 1.48% − 3.49% encoding time over [12] for
intra-mode HEVC. This indicates the effectiveness of the ETH
decision proposed in this paper, which replaces the general
CNN model based classification in [12].

3) Residual CTUs vs. Original CTUs: For inter-mode
HEVC complexity reduction, we propose to feed the
ETH-CNN model with residual CTUs, rather than the original
CTUs. In our ablation experiments, we thus validate the
effectiveness of residual CTUs in our approach. To this end,
we compare the performance of the ETH-CNN model fed with
residual CTUs and original CTUs. Note that original CTUs are
replaced by residual CTUs in both training and test procedures.
Table VI shows that the residual CTUs can improve the
RD performance with 5.461% BD-BR saving and 0.142dB
BD-PSNR increase. The cost is 1.12% − 2.24% increase in
the encoding time.

4) ETH-CNN + LSTM vs. Only ETH-CNN: In our
approach, ETH-LSTM is a major contribution for inter-mode
HEVC complexity reduction. We thus show the performance
improvement of embedding the ETH-LSTM model in our
approach, i.e., the combination of the ETH-CNN and ETH-
LSTM models. Note that the residual CTUs are as the input
to the ETH-CNN model followed by the ETH-LSTM model.
As shown in Table VI, the ETH-LSTM model prominently
improves the RD performance with less than one half BD-BR
and BD-PSNR, and meanwhile has insignificant change of
the encoding time. This indicates the effectiveness of the
ETH-LSTM model in our approach. Besides, the ETH-LSTM
model introduces little computational time in our approach,
since Sections IV-E and V-C have investigated that the ETH-
LSTM model consumes much less floating-point operations
than the ETH-CNN model.

Fig. 11. RD performance with different training sets. At the AI configuration,
Set-1/2, Set-1/4 and Set-1/8 contain 850, 425 and 213 images, respectively.
At the LDP configuration, those are 42, 21 and 11 video sequences.

Fig. 12. Curves for �bitrate, �PSNR and �T of our approach at different
QPs. The square marks are the results at four anchored QPs, and the cross
marks represent the results at other QPs.

F. Performance Evaluation With Various Settings

1) Evaluation With Different Amount of Training Data:
Since the proposed approach is data-driven, it is necessary
to evaluate its performance when changing the amount of
training data. For intra- and inter-modes, the 1700 training
images and 83 training sequences in our CPH-Intra and CPH-
Inter databases are regarded as the full training sets, namely
Set-Full. For either intra- or inter-mode, three smaller training
sets are generated via randomly selecting 1/2, 1/4 and 1/8
of images or videos from the corresponding Set-Full, namely
Set-1/2, Set-1/4 and Set-1/8, respectively. Afterwards,
the ETH-CNN and ETH-LSTM models are retrained on
Set-1/2, Set-1/4 and Set-1/8, respectively. Fig. 11 shows the
RD performance of our approach, when changing the amount
of training data (i.e., Set-full, Set-1/2, Set-1/4 and Set-1/8).
Note that the results are averaged over all test images or all
test sequences at QPs 22, 27, 32 and 37. We can observe
in Fig. 11 that BD-BR decreases and BD-PSNR increases
along with the increased amount of training data, for both AI
(i.e., intra-mode) and LDP (i.e., inter-mode) configurations.
Therefore, the large-scale CPH databases are essential to
achieve the desirable RD performance.

2) Generalization Capability at Different QPs: In addition
to four QPs evaluated above (QP = 22, 27, 32, 37),
we further test our approach for reducing complexity
of intra- and inter-mode HEVC at other eight QPs, i.e.,
QP = 20, 24, 26, 28, 30, 34, 36, 38. To test the generalization
capability of our approach, we directly use the ETH-CNN and
ETH-LSTM models trained at four original QPs (i.e., QP = 22,
27, 32, 37) without re-training on the sequences compressed at
other QPs. Fig. 12 illustrates the bit-rate difference (�bitrate),
PSNR loss (�PSNR) and time reduction (�T ) of our approach
at different QPs, for complexity reduction of HEVC at both
AI and LDP configurations. Note that the results are averaged
over all test video sequences. In this figure, the square marks
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TABLE VII

RESULTS FOR SEQUENCES OF THE JCT-VT TEST SET (LDB & RA)

denote the test results at four original QPs, whereas the cross
marks mean the test results at eight other QPs (the sequences
compressed at these QPs are not used for training). As shown
in Fig. 12-left and -middle, �bitrate and �PSNR at each of
other QPs (i.e., cross marks) are close to those of the adjacent
original QPs (i.e., square marks), with only slight fluctuation.
This indicates the generalization capability of our approach at
different QPs. Besides, we can see from Fig. 12-right that the
higher QPs result in larger reduction rate of encoding time.

3) Evaluation at LDB and RA Configurations: We further
evaluate the performance of our approach for HEVC com-
plexity reduction at the LDB and RA configurations. In our
experiments, the ETH-CNN and ETH-LSTM models for both
configurations were retrained from the training sequences at
the corresponding configurations in our CPH-Inter database.
For the LDB configuration, the experimental settings followed
those for the LDP configuration. For the RA configuration,
we slightly modified our approach to reduce HEVC complex-
ity. Specifically, the length of ETH-LSTM was 32 for both
training and test at the RA configuration, in accord with the
period between two adjacent I frames. Here, the training sam-
ples were non-overlapping instead of the 10-frame overlapping
used in the LDP configuration, ensuring all frames of the
training samples locate in the same period within two adjacent
random access points. Besides, the order of frames fed into
ETH-LSTM followed the order of encoding rather than that of
displaying. Table VII shows the performance of our and other
state-of-the-art approaches for HEVC complexity reduction
at the LDB and RA configurations. Similar to the above
evaluation, the results in this table are averaged over all
18 standard video sequences from the JCT-VC test set [2]. As
shown in Table VII, our approach at the RA configuration is
able to reduce 43.14% ∼ 64.07% encoding time while incur-
ring 1.483% of BD-BR increment and 0.048dB of BD-PSNR
loss, similar to those at the LDP configuration (−43.84% ∼
−62.94% of �T , 1.495% of BD-BR and −0.046dB of
BD-PSNR). More importantly, our approach outperforms other
state-of-the-art approaches [8], [7] and [10] in terms of both
encoding time and RD performance. At the LDB configura-
tion, similar results can be found. Therefore, the effectiveness
of our approach at the LDB and RA configurations is verified.

4) Evaluation on Sequences With Drastic Scene Change:
In practice, drastic scene change may occur in videos. Thus,
we further evaluate the performance of our approach on the
sequences that have scene change, under the LDP and RA
configurations. Among the 18 JCT-VC test sequences [2],
only sequence Kimono (1920 × 1080) has drastic scene
change. Hence, in addition to Kimono, two sequences with
drastic scene change, Tennis (1920 × 1080) and Mobisode
(832 × 480), were tested in our experiments. Table IV of

the Supporting Document shows the overall performance of
our and other approaches, averaged over all frames of each
sequence at QP = 22, 27, 32, and 37. We can see from
this table that our approach outperforms other approaches for
sequences with scene change. Moreover, in the Supporting
Document we further compare the results of our and other
approaches in the scene changed frames of the above three
sequences, and the results show that our approach is robust to
scene change.

VII. CONCLUSIONS

In this paper, we have proposed a deep learning approach
to reduce the encoding complexity of intra- and inter-
mode HEVC, which learns to predict the optimal CU
partition instead of using conventional brute-force RDO
search. To deepen the networks of our deep learning approach,
the CPH-Intra and CPH-Inter database was established, con-
sisting of large-scale data of HEVC CU partition at intra-
and inter modes, respectively. Then, two deep learning archi-
tectures, i.e., ETH-CNN and ETH-LSTM, were proposed to
predict the CU partition for reducing the HEVC complexity at
the intra- and inter-modes. The output of these architectures is
HCPM, which hierarchically represents the CU partition in a
CTU. Upon the representation of HCPM, an early termination
mechanism was introduced in ETH-CNN and ETH-LSTM to
save the computational time. The experimental results show
that our deep learning approach performs much better than
other state-of-the-art approaches in terms of both complexity
reduction and RD performance.

There are three promising directions for future works. Our
work, at the current stage, mainly focuses on predicting the
CU partition to reduce the HEVC encoding complexity. Other
components, such as PU and TU prediction, can also be
replaced by deep learning models to further reduce the encod-
ing complexity of HEVC. This is an interesting future work.
In the deep learning area, various techniques have been pro-
posed to accelerate the running speed of deep neural networks.
Our deep learning approach may be sped up by applying these
acceleration techniques, which is seen as another promising
future work. Beyond the CPU implementation of the current
work, our approach may be further implemented in the FPGA
device in future, for practical applications.
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