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Learning to Detect Video Saliency
With HEVC Features
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Abstract— Saliency detection has been widely studied to predict
human fixations, with various applications in computer vision and
image processing. For saliency detection, we argue in this paper
that the state-of-the-art High Efficiency Video Coding (HEVC)
standard can be used to generate the useful features in com-
pressed domain. Therefore, this paper proposes to learn the video
saliency model, with regard to HEVC features. First, we establish
an eye tracking database for video saliency detection, which can
be downloaded from https://github.com/remega/video_database.
Through the statistical analysis on our eye tracking database, we
find out that human fixations tend to fall into the regions with
large-valued HEVC features on splitting depth, bit allocation,
and motion vector (MV). In addition, three observations are
obtained with the further analysis on our eye tracking database.
Accordingly, several features in HEVC domain are proposed on
the basis of splitting depth, bit allocation, and MV. Next, a kind
of support vector machine is learned to integrate those HEVC
features together, for video saliency detection. Since almost all
video data are stored in the compressed form, our method is
able to avoid both the computational cost on decoding and
the storage cost on raw data. More importantly, experimental
results show that the proposed method is superior to other state-
of-the-art saliency detection methods, either in compressed or
uncompressed domain.

Index Terms— Saliency detection, compressed domain, HEVC,
machine learning, SVM.

I. INTRODUCTION

ACCORDING to the study on the human visual sys-
tem (HVS) [1], when a person looks at a scene, he/she

may pay much visual attention on a small region (the fovea)
around a point of eye fixation at high resolutions. The other
regions, namely the peripheral regions, are captured with little
attention at low resolutions. As such, humans are able to avoid
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the processing of tremendous visual data. Visual attention is
therefore a key to perceive the world around humans, and it has
been extensively studied in psychophysics, neurophysiology,
and even computer vision societies [2]. Saliency detection
is an effective way to predict the amount of human visual
attention attracted by different regions in images/videos, with
computation on their features. Most recently, saliency detec-
tion has been widely applied in object detection [3], [4],
object recognition [5], image retargeting [6], image quality
assessment [7], and image/video compression [8], [9].

In earlier time, some heuristic saliency detection methods
are developed according to the understanding of the HVS.
Specifically, in light of the HVS, Itti et al. [10] found out
that the low level features of intensity, color, and orientation
are efficient in detecting saliency of still images. In their
method, center-surround responses in those feature channels
are established to yield the conspicuity maps. Then, the
final saliency map can be obtained by linearly integrating
conspicuity maps of all three features. For detecting saliency in
videos, Itti et al. [11] proposed to add two dynamic features
(i.e., motion and flicker contrast) into Itti’s image saliency
model [10]. Later, other advanced heuristic methods [12]–[18]
have been proposed for modeling video saliency.

Recently, data-driven methods [19]–[24] have emerged to
learn the visual attention models from the ground-truth eye
tracking data. Specifically, Judd et al. [19] proposed to learn
a linear classifier of support vector machine (SVM) from
training data for image saliency detection, based on several
low, middle, and high level features. For video saliency
detection, most recently, Rudoy et al. [23] have proposed a
novel method to predict saliency by learning the conditional
saliency map from human fixations over a few consecutive
video frames. This way, the inter-frame correlation of visual
attention is taken into account, such that the accuracy of
video saliency detection can be significantly improved. Rather
than free-view saliency detection, a probabilistic multi-task
learning method was developed in [21] for the task-driven
video saliency detection, in which the “stimulus-saliency”
functions are learned from the eye tracking data as the top-
down attention models.

High efficiency video coding (HEVC) [25] was formally
approved as the state-of-the-art video coding standard in
April 2013. It achieves double coding efficiency improvement
over the preceding H.264/AVC standard. Interestingly, we
found out that the state-of-the-art HEVC encoder can be
explored as a feature extractor to efficiently predict video
saliency. As shown in Figure 1, the HEVC domain features
on splitting depth, bit allocation and motion vector (MV)
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Fig. 1. An example of HEVC domain features and heat map of human
fixations for one video frame. (a), (b), and (c) are extracted from the HEVC
bitstream of video BQSquare (resolution: 416 × 240) at 130 Kbps. Note that
in (c) only the MVs that are larger than 1 pixel are shown. (d) is the heat
map convolved with a 2D Gaussian filter over fixations of 32 subjects.

for each coding tree unit (CTU), are highly correlated with
the human fixations. The statistical analysis of Section III-B
verifies such high correlation. Therefore, we develop several
features in our method for video saliency detection, which are
based on splitting depths, bit allocation and MVs in HEVC
domain. It is worth pointing out that most videos exist in the
form of encoded bitstreams, and the features related to entropy
and motion have been well exploited by video coding at the
encoder side. Since [2] has argued that entropy and motion
are very effective in video saliency detection, our method
utilizes these well-exploited HEVC features (splitting depth,
bit allocation and MV) at the decoder side to achieve high
accurate detection on video saliency.

Generally speaking, the main motivation of using HEVC
features in our saliency detection method is two fold.
(1) Our method takes advantage from sophisticated encoding
of HEVC, to effectively extract features for video saliency
detection. Our experimental results in this paper also show
that the HEVC features are indeed very effective in video
saliency detection. (2) Our method can efficiently detect video
saliency from HEVC bitstreams without completely decoded
the videos, thus avoiding both the computational time and
storage. Consequently, our method is generally more efficient
than the aforementioned video saliency detection methods at
pixel domain (or called uncompressed domain), which have
to decode the bitstreams into raw data. Such efficiency is also
validated by our experiments.

There are only a few methods [26]–[28] proposed for
detecting video saliency in compressed domain of previous
video coding standards. Among these methods, the block-
wise discrete cosine transform (DCT) coefficients and MVs are
extracted in MPEG-2 [26] and MPEG-4 [27]. Bit allocation
of H.264/AVC is exploited for saliency prediction in [28].
However, all above methods do not take full advantage of
the sophisticated features of the modern HEVC encoder,
such as CTU splitting [29] and r-λ bit allocation [30]. More
importantly, all methods of [26]–[28] fail to find out the precise
impact of each compressed domain feature on attracting visual

attention. In fact, the relationship between compressed domain
features and visual attention can be learned from the ground-
truth eye tracking data. Thereby, this paper proposes to learn
the visual attention model of videos with regard to the well
explored HEVC features.

Similar in spirit, the latest work of [31] also makes use of
HEVC features for saliency detection. Despite conceptually
similar, our method is greatly different from [31] in two
aspects. From the aspect of feature extraction, our method
develops pixel-wise HEVC features, whilst [31] directly
uses block-based HEVC features with deeper decoding (e.g.,
inverse DCT). Instead of going deeper, our method develops
shallow decoded HEVC features with sophisticated design
of temporal and spatial difference on these features, more
unrestrictive than [31]. In addition, camera motion is detected
and then removed in our HEVC features, such that our features
are more effective in predicting attention. From the aspect of
feature integration, compared with [31], our method is data-
driven, in which a learning algorithm is developed to bridge the
gap between HEVC features and video saliency. Meanwhile,
our data-driven method benefits from our established eye
tracking database with thorough analysis.

Specifically, the main contributions of this paper are listed
in the following.

• We establish an eye tracking database on viewing 33 raw
videos of the latest data sets, with the thorough analysis
and observations on our database.

• We propose several saliency detection features in HEVC
domain, according to the analysis and observations on our
established eye tracking database.

• We develop a data-driven method for video saliency
detection, with respect to the proposed HEVC features.

The rest of this paper is organized as follows. In Section II,
we briefly review the related work on video saliency detection.
In Section III, we present our eye tracking database as well as
the analysis and observations on our database. In light of such
analysis and observations, Section IV proposes several HEVC
features for video saliency detection. Section V outlines our
learning based method, which is based on the proposed HEVC
features. Section VI shows the experimental results to validate
our method. Finally, Section VII concludes this paper.

II. RELATED WORK ON VIDEO SALIENCY DETECTION

A. Heuristic Video Saliency Detection

For modeling saliency of a video, a great number of
methods [11]–[18] have been proposed. Itti et al. [11] started
the initial work of video saliency detection, by adding two
dynamic features of motion and flicker contrast into Itti’s
image saliency model [10]. Later, a novel term called surprise
was defined in [14] to measure how the visual change attracts
human observers. With the new term surprise, [14] developed
a Bayesian framework to calculate the Kullback-Leibler
divergence (KL) between spatio-temporal posterior and prior
beliefs, for predicting video saliency. Some other Bayesian
framework related methods, e.g., [15], were also proposed for
video saliency detection. Most recently, some advanced video
saliency detection methods [16]–[18] have been proposed.
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To be more specific, Guo and Zhang [16] applied phase
spectrum of quaternion Fourier transform (PQFT) on four
feature channels (two color channels, one intensity channel,
and one motion channel) to detect video saliency.
Lin et al. [18] utilized earth mover’s distance (EMD)
to measure the center-surround difference in spatio-temporal
receptive filed, for producing the dynamic saliency maps of
videos. Inspired by sparse representation, Ren et al. [17]
proposed to explore the movement of a target patch for
temporal saliency detection of videos. In their method, the
movement of the target patch can be estimated by finding
the minimal reconstruction error of sparse representation
regarding the patches of neighboring frames. In addition
to temporal saliency detection, the center-surround contrast
needs be modeled for spatial saliency detection. This is
achieved through sparse representation with respect to
neighboring patches.

In fact, top-down visual cues play an important role in
determining the saliency of a scene. Thereby, the top-down
visual attention models have been studied in [32] and [33] for
predicting the saliency of dynamic scenes in a video. In [32],
Pang et al. proposed to integrate the top-down information of
eye movement patterns (i.e., passive and active states [13]) in
video saliency detection. In [33], Wu and Xu found out that
the high level features, such as face, person, car, speaker, and
flash, may attract extensive human attention. Thus, these high
level features are integrated with the bottom-up model [16]
for saliency detection of news videos.

However, the understanding of the HVS is still in its infancy,
and saliency detection thus has a long way to go yet. In fact,
we may rethink saliency detection by taking advantage of
the existing video coding techniques. Specifically, the video
coding standards have evolved for almost three decades, with
HEVC being the latest one. The evolution of video coding
adopts several elegant and effective techniques to produce sev-
eral sophisticated features, for continuously improving coding
efficiency. For example, the state-of-the-art HEVC standard
introduced fractional sample interpolation to represent MVs
with quarter-sample precision, thus being able to precisely
model object motions. Moreover, HEVC proposes to partition
CTUs into smaller blocks using the tree structure and quadtree-
like signaling [29], which can well reflect the texture complex-
ity of video frames. On the other hand, the HEVC features,
which are generated by the sophisticated process of the latest
HEVC techniques, may be explored for efficient video saliency
detection.

B. Data-Driven Video Saliency Detection

During the past decade, data-driven methods have emerged
as a possible way to learn video saliency model from ground-
truth eye tracking data, instead of the study on the HVS. The
existing data-driven video saliency detection can be further
divided into task-driven [13], [21], [22], [34], [35] and free-
view [20], [23], [24], [36] methods.

For task-driven video saliency detection, Peter and Itti [13]
proposed to incorporate the computation on signatures of each
video frame. Then, a regression classifier is learned from the

subjects’ fixations on playing video games, which associates
the different classes of signatures (seen as gist) with the gaze
patterns of task-driven attention. Combined with 12 multi-
scale bottom-up features, [13] has high accuracy in task-driven
saliency detection. Most recently, a dynamic Bayesian network
method [35] has been proposed for learning top-down visual
attention model of playing video games. Besides the task of
playing video games, a data-driven method [34] on video
saliency detection was proposed with the dynamic consistency
and alignment models, for the task of action recognition.
In [34], the proposed models are learned from the task-driven
human fixations on large-scale dynamic computer vision data-
bases like Hollywood-2 [37] and UCF Sports [38]. In [21],
Li et al. developed a probabilistic multi-task learning method
to include the task-related attention models for video saliency
detection. The “stimulus-saliency” functions are learned from
the eye tracking database, as the top-down attention models to
some typical tasks of visual search. As a result, [21] is “good
at” video saliency detection in multiple tasks, more generic
than other methods that focus on single visual task. However,
all task-driven saliency detection methods can only deal with
the specific tasks.

For free-view video saliency detection, Kienzle et al. [20]
proposed a nonparametric bottom-up method to model video
saliency, via learning the center-surround texture patches and
temporal filters from the eye tracking data. Recently,
Lee et al. [24] have proposed to extract the spatio-temporal
features, i.e., rarity, compactness, center prior, and motion,
for the bottom-up video saliency detection. In their bottom-
up method, all extracted features are combined together by
an SVM, which is learned from the training eye tracking data.
In addition to the bottom-up model, Hua et al. [36] proposed to
learn the middle level features, i.e., gists of a scene, as the top-
down cue for both video and image saliency detection. Most
recently, Rudoy et al. [23] have proposed to detect the saliency
of a video, by simulating the way that humans watch the video.
Specifically, a visual attention model is learned to predict the
saliency map of a video frame, given the fixation maps from
the previous frames. As such, the inter-frame dynamics of gaze
transitions can be taken into account during video saliency
detection.

As aforementioned, this paper mainly concentrates on utiliz-
ing the HEVC features for video saliency detection. However,
there is a gap between HEVC features and human visual atten-
tion. From data-driven perspective, machine learning can be
utilized in our method to investigate the relationship between
HEVC features and visual attention, according to eye tracking
data. Thus, this paper aims at learning an SVM classifier
to predict saliency of videos using the features from HEVC
domain.

III. DATABASE AND ANALYSIS

A. Database of Eye Tracking on Raw Videos

In this paper, we conducted the eye tracking experiment to
obtain fixations on viewing videos of the latest test sets. Here,
all 33 raw videos from the test sets [9], [39], which have
been commonly utilized for evaluating HEVC performance,
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were included in our eye tracking experiment. We further
conducted the extra experiment to obtain the eye tracking
data on watching all videos of our database compressed by
HEVC at different quality. Through the data analysis, we found
that visual attention is almost unchanged when videos are
compressed at high or medium quality (more than 30 dB).
This is consistent with the result of [40]. Compared with the
conventional databases (e.g., SFU [41] and DIEM [42]), the
utilization of these videos benefits from the state-of-the-art test
sets in providing videos with diverse resolutions and content.
For the resolution, the videos vary from 1080p (1920× 1080)
to 240p (416 × 240). For the content, the videos include sport
events, surveillance, video conferencing, video games, videos
with the subscript, etc.

In our eye tracking experiment, all videos are with
YUV 4:2:0 sampling. Here, the resolutions of the videos in
Class A of [39] were down-sampled to be 1280 × 800, as
the screen resolution of the eye tracker can only reach to
1920 × 1080. Other videos were displayed in their original
resolutions. In our experiment, the videos were displayed in
a random manner at their default frame rates, to reduce the
influence of video playing order on the eye tracking results.
Besides, a blank period of 5 seconds was inserted between
two consecutive videos, so that the subjects can have a proper
rest time to avoid eye fatigue.

There were a total of 32 subjects (18 male and 14 female,
aging from 19 to 60) involved in our eye tracking experiment.
These subjects were selected from the campuses of Beihang
University and Microsoft Research Asia. All subjects have
either corrected or uncorrected normal eyesight. Note that only
two subjects were experts, who are working in the research
field of saliency detection. The other 30 subjects did not have
any research background in video saliency detection, and they
were also native to the purpose of our eye tracking experiment.

The eye fixations of all 32 subjects over each video frame
were recorded by a Tobii TX300 eye tracker at a sample rate
of 300 Hz. The eye tracker is integrated with a monitor of
23-inch LCD screen, and the resolution of the monitor was set
to be 1920 × 1080. All subjects were seated on an adjustable
chair at a distance of around 60 cm from the screen of the
eye tracker, ensuring that their horizontal sight is in the center
of the screen. Before the experiment, subjects were instructed
to perform the 9-point calibration for the eye tracker. Then,
all subjects were asked to free-view each video. After the
experiment, 392,163 fixations over 13,020 frames of 33 videos
were collected. Here, the eye fixations of all subjects and the
corresponding Matlab code for our eye tracking database are
available online: https://github.com/remega/video_database.

B. Analysis on Our Eye Tracking Database

Figure 1 has shown that the HEVC features, i.e., splitting
depth, bit allocation, and MV, are effective in predicting
human visual attention. It is therefore interesting to statisti-
cally analyze the correlation between these HEVC features
and visual attention. From now on, we concentrate on the
statistical analysis on our eye tracking database, to show the
effectiveness of the HEVC features on the prediction of visual

Fig. 2. The statistical results for fixations belonging to different groups of
pixels, in which values of the corresponding HEVC features are sorted in the
descending order. Here, all 392,163 fixations of 33 videos are used for the
analysis. In this figure, the horizontal axis indicates the groups of pixels, in
which the values of the corresponding HEVC features are in the descending
order. For example, 0 − 10% means that the first group of pixels, the features
of which rank top 10%. The vertical axis shows the percentage of fixations
that fall into each group.

attention. This is a new finding, which reveals the correlation
between HEVC features and visual attention.

For all videos of our database, the features on splitting
depth, bit allocation, and MV were extracted from the cor-
responding HEVC bitstreams. Then, the maps of these fea-
tures were generated for each video frame. Note that the
configuration to generate the HEVC bitstreams can be found
in Section VI. Afterwards, a 2D Gaussian filter was applied
to all three feature maps of each video frame. For each
feature map, after sorting pixels in the descending order of
their feature values, the pixels were equally divided into
10 groups according to the values of corresponding features.
For example, the group of 0 − 10% stands for the set of
pixels, the features of which rank top 10%. Finally, the number
of fixations belonging to each group was counted upon all
33 videos in our database.

We show in Figure 2 the percentages of eye fixations
belonging to each group, in which the values of the corre-
sponding HEVC features decrease alongside the groups. From
this figure, we can find out that extensive attention is drawn
by the regions with large-valued HEVC features, especially for
the feature of bit allocation. For example, about 33% fixations
fall into the regions of top 10% high-valued feature of bit
allocation, whereas the percentage of those hitting the bottom
10% is much less than 2%. Hence, the HEVC features on
splitting depth, bit allocation, and MV, are explored for video
saliency detection in our method (Section IV).

C. Observations From Our Eye Tracking Database

Beyond the analysis of our eye tracking database, we
verify some other factors on attracting human attention, with
the following three observations. These observations provide
insightful guide for developing our saliency detection method.

Observation 1: Human fixations lag behind the moving or
new objects in a video by some microseconds.

In Figure 3, we show the frames of videos BasketballDrive
and Kimono with the corresponding heat maps of human
fixations. The first row of this figure reveals that the visual
attention falls behind the moving object, as the fixations trail
the moving basketball. In particular, the distance between the
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Fig. 3. Illustration of Observation 1. This figure shows the heat maps of human fixations of all 32 subjects, on several selected frames of videos BasketballDrive
and Kimono. In BasketballDrive, the green box is drawn to locate the moving basketball.

Fig. 4. Illustration of Observation 2. This figure shows the heat maps of visual attention of all 32 subjects, over several selected frames of videos vidyo1
and ParkScene.

basketball and fixations becomes large, when the basketball
moves at high speed. Besides, the second row of Figure 3 illus-
trates that the human fixations lag behind the new appearing
objects by a few frames. It is because the human fixations still
stay in the location of the salient region in previous frames,
even when the scene has been changed. This completes the
analysis of Observation 1.

Observation 2: Human fixations tend to be attracted by the
new objects appearing in a video.

It is intuitive that visual attention is probably to be attracted
by the objects newly emerging in a video. It is thus worth
analyzing the influence of the object emergence on human
visual attention. Figure 4 shows the heat maps of fixations
on several frames selected from videos vidyo1 and ParkScene.
Note that a person appears in the door from the 553-th frame
of the video vidyo1, and that a person riding bicycle arises
from the 64-th frame of the video ParkScene. From Figure 4,
one may observe that once a new object appears in the video,
it probably attracts a huge amount of visual attention. This
completes the analysis of Observation 2. Note that there exists
the lag of human fixations, as the door is still fixated on when
the person has left. This also satisfies Observation 1.

Observation 3: The object, which moves in the opposite
direction of the surrounding objects, is possible to receive
extensive fixations.

The previous work [10] has verified that the human fixations
on still images are influenced by the center-surround features
of color and intensity. Actually, the center-surround feature
of motions also has an important effect on attracting visual

Fig. 5. Illumination of Observation 3. This figure shows the map of human
fixations of all 32 subjects, over a selected frame of video PeopleOnStreet.
Note that in the video a lot of visual attention is attended to the old man,
who pushes a trolley and walks in the opposite direction of the crowd.

attention. As seen from Figure 5, the old man with a trolley
moves in the opposite direction of the surrounding crowd,
and he attracts the majority of visual attention. Therefore,
this suggests that the object moving in the opposite direction
to its surround (i.e., it is with large center-surround motion)
may receive extensive fixations. This completes the analysis
of Observation 3.

IV. HEVC FEATURES FOR SALIENCY DETECTION

In this section, we mainly focus on exploring the features in
HEVC domain, which can be used to efficiently detect video
saliency. As analyzed above, three HEVC features, i.e., split-
ting depth, bit allocation, and MV, are effective in predicting
video saliency. Therefore, they are worked out as the basic
features of video saliency detection, to be presented in
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Section IV-A. Note that the camera motion has to be removed
for the MV feature, with an efficient algorithm developed in
Section IV-A. Based on the three basic HEVC features, the
features on temporal and spatial difference are discussed in
Sections IV-B and IV-C, respectively.

A. Basic HEVC Features

1) Splitting Depth: The CTU partition structure [29], a new
technique introduced by HEVC, can offer more flexible block
sizes in video coding. In HEVC, the block sizes range from
64 × 64 to 8 × 8. In other words, the splitting depth varies
from 0 (= 64 × 64 block size) to 3 (= 8 × 8 block size).
In HEVC, rather than raw pixels, the residual of each coding
block is encoded, which reflects spatial texture in intra-frame
prediction and temporal variation in inter-frame prediction.
Consequently, in intra-frame prediction, splitting depth of each
CTU can be considered to model spatial saliency. In inter-
frame prediction, splitting depth of each coding block can
be used to model temporal saliency. Since Section III-B has
demonstrated that most fixations fall into groups with high-
valued splitting depths, the splitting depth of each CU is
applied as a basic HEVC feature in video saliency detection.

Let dk
i j be the normalized splitting depth of pixel (i, j) at

the k-th frame. First, the splitting depths of all CUs need
to be extracted from HEVC bitstreams. Then, we assume
that the splitting depth of each pixel is equivalent to that of
its corresponding CU. Afterwards, all splitting depths should
be normalized by the maximal splitting depth in each video
frame. At last, all normalized dk

i j can be yielded as one basic
feature of our method.

2) Bit Allocation: Since the work of [30] is a state-of-the-art
rate control scheme for HEVC, it has been embedded into the
latest HEVC reference software (HM 16.0) for assigning bits
to different CTUs. In the work of [30], the rate-distortion is
optimized in each video frame, such that the CTUs with high-
information are generally encoded by more bits. It has been
argued in [2] that high-information regions attract extensive
visual attention. Thus, the bits, allocated by [30] in HEVC,
are considered a basic feature, modelling spatial saliency in
intra frame prediction and temporal saliency in inter frame
prediction. Specifically, Section III-B has shown that visual
attention is highly correlated with the bit allocation of each
CTU. Thereby, bit per pixel (bpp) is extracted from HEVC
bitstreams, towards saliency detection. Let bk

i j denote the nor-
malized bpp of pixel (i, j) at the k-th frame. Here, the bpp is
achieved via averaging all consumed bits in the corresponding
CTU. Next, the bpp is normalized to be bk

i j in each video
frame, and it is then included as one of basic HEVC features
to detect saliency.

3) Motion Vector: In video coding, MV identifies the loca-
tion of matching prediction unit (PU) in the reference frame.
In HEVC, MV is sophisticatedly developed to indicate motion
between neighboring frames. Intuitively, MV can be used to
detect video saliency, as motion is an obvious cue [16] of
salient regions. This intuition has also been verified by the
statistical analysis of Section III-B. Therefore, MV is extracted
as a basic HEVC feature in our method.

Fig. 6. An example of MV values of all PUs in (a) a frame with no camera
motion, and (b) a frame with right-to-left camera motion. Note that the MVs
are extracted from HEVC bitstreams. In (a) and (b), the dots stand for the
origin of each MV, and the blue lines mean the intensity and angle of each
MV. It can be seen that in (a) there is no camera motion, as most MV values
are close to zero, whereas the camera motion in (b) is from right to left
according the most MV values.

During video coding, MV is accumulated by two factors:
the camera motion and object motion. It has been pointed out
in [43] that in a video, moving objects may receive extensive
visual attention, while static background normally draws little
attention. It is thus necessary to distinguish moving objects and
static background. Unfortunately, MVs of static background
may be as large as moving objects, due to the camera motion.
On the other hand, although temporal difference of MVs is
able to make camera motion negligible for static background,
it may also miss the moving objects. Therefore, the camera
motion has to be removed from calculated MVs, to estimate
object motion for saliency detection.

Figure 6 shows that the camera motion can be estimated
to be the dominant MVs in a video frame. In this paper, we
therefore develop a voting algorithm to estimate the motion
of camera. Assuming that mk

i j is the two-dimensional MV of
pixel (i, j) at the k-th frame, the dominant camera motion mk

c
in this frame can be determined in the following way.

First, the static background Sk
b is roughly extracted to be

Sk
b = {(i, j)|dk

i j · bk
i j <

1

|Ik |
∑

(i ′, j ′)∈Ik

dk
i ′ j ′ · bk

i ′ j ′}, (1)

for the k-th frame Ik (with |Ik| pixels). It is because the
static background is generally with less splitting depth and
bit allocation than the moving foreground objects. Then,
the azimuth a(mk

c) for the dominant camera motion can be
calculated via voting all MV angles in the background Sk

b as,

max hist(
⋃

i, j∈Sk
b

a(mk
i j )), (2)

where a(mk
i j ) is the azimuth for MV mk

i j , and hist(·) is the
azimuth histogram of all MVs. In this paper, 16 bins with
equal angle width (= 360◦/16 = 22.5◦) are applied for the
histogram. After obtaining a(mk

c), radius r(mk
c) for the camera

motion needs to be calculated via averaging over all MVs
from the selected bin of a(mk

c). Finally, the camera motion
of each frame can be achieved upon a(mk

c) and r(mk
c). For

justification, we show in Figure 7 some subjective results
of the camera motion estimated by our voting algorithm (in
yellow arrows), as well as the annotated ground truth of
camera motion (in blue arrows). As can be seen from this
figure, our algorithm is capable of accurately estimating the
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Fig. 7. The results of camera motion estimation, yielded by our voting algorithm. The first six videos are with some extended camera motion, whereas the
last one is without any camera motion. In (b), the yellow and blue arrows represent the estimated and manually annotated vectors of the camera moving from
frames of (a) to frames of (b), respectively. Similarly, the yellow and blue arrows of (c) show the camera motion from frames of (b) to (c). Refer to Appendix
for the way of annotating ground truth camera motion.

camera motion. See Appendix for more justification on the
estimation of camera motion.

Next, in order to track the motion of objects, all MVs
obtained in HEVC domain need to be processed to remove
the estimated camera motion. All processed MVs should be
then normalized in each video frame, denoted as m̂k

i j . Since
it has been argued in [16] that visual attention is probably
attracted by moving objects, ||m̂k

i j ||2 is utilized as one of the
basic HEVC features to predict video saliency.

B. Temporal Difference Features in HEVC Domain

As revealed in Observation 2, humans tend to fixate on the
new objects appearing in a video. In fact, the new appearing
or moving objects in the video also lead to large temporal
difference of HEVC features in co-located regions of neigh-
boring frames. Hence, the temporal difference features, which
quantify the dissimilarity of splitting depth, bit allocation and
MV across neighboring frames, are developed as novel HEVC
features in our method. However, the temporal difference in
co-located region across video frames refers to the sum of
object motion and camera motion. It has been figured out
in [43] that moving objects attract extensive visual attention,
whereas camera motion receives little attention. Therefore,
when developing temporal difference features, camera motion
needs to be removed to compensate object motion (to be
discussed in the following).

Specifically, let us first look at the way on estimating
temporal difference of splitting depths. For pixel (i, j) at
the k-th frame, �t dk

i j is defined as the difference value of
splitting depth across neighboring frames. It can be calculated
by averaging the weighted difference values of the splitting
depths over all previous frames,

�t d
k
i j =

∑k
l=1 exp(− l2

σ 2
d
)||dk

i j − dk−l
i j ||1

∑k
l=1 exp(− l2

σ 2
d
)

, (3)

where parameter σd controls the weights on splitting depth
difference between two frames. In (3), dk−l

i j is the splitting
depth of pixel (i, j) at the (k − l)-th frame. After considering

the camera motion with our voting algorithm, we assume that
(i k,l , j k,l) is the pixel at the (k − l)-th frame matching to
pixel (i, j) at the k-th frame. To remove the influence of the
camera motion, we replace dk−l

i j in (3) by dk−l
ik,l j k,l . Then, (3) is

rewritten to be

�t d
k
i j =

∑k
l=1 exp(− l2

σ 2
d
)||dk

i j − dk−l
ik,l j k,l ||1

∑k
l=1 exp(− l2

σ 2
d
)

. (4)

After calculating (4), �t dk
i j needs to be normalized in each

video frame, as one of temporal difference features in HEVC
domain.

Furthermore, the bpp difference across neighboring frames
is also regarded as a feature for saliency detection. Let �t bk

i j
denote the temporal difference of the bpp at pixel (i, j)
between the currently processed k-th frame and its previous
frames. Similar to (4), �t bk

i j can be obtained by

�t b
k
i j =

∑k
l=1 exp(− l2

σ 2
b
)||bk

i j − bk−l
ik,l j k,l ||1

∑k
l=1 exp(− l2

σ 2
b
)

, (5)

where σb decides the weights of the bpp difference between
frames. In (5), with the compensated camera motion, bk−l

ik,l j k,l

is the bpp for pixel (i k,l , j k,l) at the (k − l)-th frame, which
matches to pixel (i, j) at the k-th frame.

Finally, the temporal difference of MV is also taken into
account, by adopting the similar way presented above. Recall
that m̂k

i j is the extracted MV of each pixel, with the camera
motion being removed. Since m̂k

i j is a 2D vector, �2-norm
operation is applied to compute the temporal difference of
MVs (denoted by �t m̂k

i j ) as follows,

�t m̂
k
i j =

∑k
l=1 exp(− l2

σ 2
m
)||m̂k

i j − m̂k−l
ik,l j k,l ||2

∑k
l=1 exp(− l2

σ 2
m
)

. (6)

In (6), we can use parameter σm to determine the weights of
MV difference between two frames. Moreover, m̂k−l

ik,l j k,l is the
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Fig. 8. Framework of our HEVC feature extractor for video saliency detection.

MV value for pixel (i k,l , j k,l) at the (k − l)-th frame, which
is the co-located pixel of (i, j) at the k-th frame, after the
camera motion is removed by our voting algorithm.

C. Spatial Difference Features in HEVC Domain

The above features are not sufficient to model saliency
in a video, since some smooth regions may stand out from
complicated background for drawing attention (like a salient
smooth ball appearing in grass land). Generally speaking,
the basic features of splitting depth and bit allocation in a
smooth region are significantly different from those in its
surrounding background. Thus, we here develop spatial dif-
ference features for saliency detection. In addition, according
to Observation 3, the object moving in the opposite direction
to the nearby objects may result in extensive visual attention.
Actually, the dissimilarity of object motion can be measured
by the spatial difference of MVs between neighboring PUs.
Hence, the spatial difference of all three basic features is
incorporated into our method, as follows.

Recall that Ik is the k-th video frame, and that dk
i j , bk

i j ,
and mk

i j denote the splitting depth, bit allocation, and MV for
pixel (i, j) of this video frame. For the spatial difference of
MV, the camera motion has to be removed in each mk

i j , defined
by m̂k

i j . Then, we have
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�sdk
i j =

∑
(i ′, j ′)∈Ik exp(− (i ′−i)2+( j ′− j )2

ξ2
d

)||dk
i ′ j ′ − dk

i j ||1
∑

(i ′, j ′)∈Ik exp(− (i ′−i)2+( j ′− j )2

ξ2
d

)

�sbk
i j =

∑
(i ′, j ′)∈Ik exp(− (i ′−i)2+( j ′− j )2

ξ2
b

)||bk
i ′ j ′ − bk

i j ||1
∑

(i ′, j ′)∈Ik exp(− (i ′−i)2+( j ′− j )2

ξ2
b

)

�sm̂k
i j =

∑
(i ′, j ′)∈Ik exp(− (i ′−i)2+( j ′− j )2

ξ2
m

)||m̂k
i ′ j ′ − m̂k

i j ||2
∑

(i ′, j ′)∈Ik exp(− (i ′−i)2+( j ′− j )2

ξ2
m

)
,

(7)

to compute the spatial difference of splitting depth, bit alloca-
tion, and MV. As in the above equations, ξd , ξb, and ξm are
the parameters to control the spatial weighting of each feature.

Finally, all nine features in HEVC domain can be achieved
in our saliency detection method. Since all the proposed
HEVC features are block-wise, the block-to-pixel refinement

Fig. 9. Framework of our learning based method for video saliency detection
with HEVC features. For the HEVC feature extractor, refer to Figure 8.

is required to obtain smooth feature maps. For the block-to-
pixel refinement, a 2D Guassian filter is applied to three basic
features. In this paper, the dimension and standard deviation of
the Gaussian filter are tuned to be 2h

15 × 2h
15 and h

30 , where h is
the height of the video. It is worth mentioning that the above
features on spatial and temporal difference are explored in
compressed domain with the block-to-pixel refinement, while
the existing methods compute contrast features in pixel domain
(e.g., in [10] and [11]). Additionally, unlike the existing
methods, the camera motion is estimated and removed when
calculating the feature contrast in our method. Despite simple
and straightforward, these features are effective and efficient,
as evaluated in experiment section.

Figure 8 summarizes the procedure of HEVC feature extrac-
tion in our saliency detection method. As seen from Figure 8,
the maps of nine features have been obtained, based on
splitting depth, bit allocation and MV of HEVC bitstreams.
We argue that one single feature is not capable enough [2] but
has different impact on saliency detection. We thus integrate
the maps of all nine features with the learned weights. For
more details, refer to the next section.

V. LEARNING BASED VIDEO SALIENCY DETECTION

This section mainly concentrates on learning an SVM
classifier to detect video saliency, using the above mentioned
nine HEVC features. The framework of our learning based
method is summarized in Figure 9. As shown in this figure,
given the HEVC bitstreams, all HEVC features need to be
extracted and calculated. Then, the saliency map of each single
video frame is yielded by combining the HEVC features with
C-support vector classification (C-SVC), which is a kind of
non-linear SVM classifer. Here, the C-SVC classifer is learned
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from the ground-truth human fixations of training videos. At
last, a simple forward smoothing filter is applied to the yielded
saliency maps across video frames, outputting the final video
saliency maps. More details about our learning based method
are to be discussed in the following.

A. Training Algorithm

In our method, the non-linear C-SVC [44], a kind of SVM,
is trained as the binary classifier to decide how possible
each pixel attracts attention, according to the proposed HEVC
features. First, for the binary classifier, both positive and
negative samples need to be obtained from the training set,
in which the positive samples mean the pixels attracting
fixations and negative samples indicate the pixels without any
visual attention. Next, three basic HEVC features of each
training sample are extracted from the HEVC bitstreams, and
then other spatial and temporal features are computed upon
the corresponding basic features. Let {(fn, ln)}N

n=1 be those
training samples, where fn is the vector of the nine HEVC
features for the n-th training sample, and ln ∈ {−1, 1} is the
class label indicating whether the sample is positive (łn =1) or
negative (łn =−1). Finally, the C-SVC for saliency detection
can be worked out, via solving the following optimization
problem,

min
w,b,{βn}N

n=1

1

2
||w||22 + C

N∑

n=1

βn

s.t. ∀n, ln(wT · φ(fn) + b) ≥ 1 − βn, βn ≥ 0. (8)

In (8), w and b are the parameters to be learned for maximiz-
ing the margin between positive and negative samples, and
βn is a non-negative slack variable evaluating the degree of
classification error of fn . In addition, C balances the trade-off
between the error and margin. Function φ(·) transforms the
training vector of HEVC features fn to higher dimensional
space. Then, w can be seen as the linear combination of
transformed vectors:

w =
N∑

m=1

λmlm · φ(fm), (9)

where λm is the Lagrange multiplier to be learned. Then, the
following holds,

wT · φ(fn) =
(

N∑

m=1

λmlm · φ(fm)

)T

· φ(fn)

=
N∑

m=1

λmlm · 〈φ(fm), φ(fn)〉. (10)

Note that 〈φ(fm), φ(fn)〉 indicates the inner product of φ(fm)
and φ(fn). To calculate (10), a kernel of radial bias func-
tion (RBF) is introduced:

K (fm, fn) = 〈φ(fm), φ(fn)〉 = exp(−γ ||fm − fn||22), (11)

where γ (> 0) stands for the kernel parameter. Here, we utilize
the above KBF kernel due to its simplicity and effectiveness.
When training the C-SVC for saliency detection, the penalty

parameter C in (8) is set to 2−3, and γ of the KBF kernel is
tuned to be 2−15, such that the trained C-SVC is rather efficient
in detecting saliency. Finally, w and b can be worked out in
the trained C-SVC as the model of video saliency detection,
to be discussed below.

B. Saliency Detection

To detect the saliency of test videos, all nine HEVC features
are integrated together using the learned w and b of our C-SVC
classifier. Then, the saliency map Sk for each single video
frame can be yielded by

Sk = wT · φ(Fk) + b, (12)

where Fk defines the pixel-wise matrix of nine HEVC features
at the k-th video frame. Note that w in (12) is one set of
weights for the binary classifier of C-SVC, which have been
obtained using the above training algorithm.

Since Observation 1 offers a key insight that visual atten-
tion may lag behind the moving or new appearing objects,
a forward smoothing filter is developed in our method to
take into account the saliency maps of previous frames.
Mathematically, the final saliency map Ŝk of the k-th video
frame is calculated by the forward smoothing filter as follows,

Ŝk = 1

	t · fr

k∑

k′=k−	t ·fr
+1

Sk′ , (13)

where t (> 0) is the time duration1 of the forward smoothing,
and fr is the frame rate of the video. Note that a simple
forward smoothing filter of (13) is utilized here, since we
mainly concentrate on extracting and integrating features for
saliency detection. Some advanced tracking filters may be
applied, instead of the forward smoothing filter in our method,
for further improving the performance on saliency detection.
To model visual attention on video frames, the final saliency
maps need to be smoothed with a 2D Gaussian filter, which is
in addition to the one for each single feature map (as shown
in Figure 8). Note that the 2D Gaussian filter here shares the
same parameters as those for single feature maps.

VI. EXPERIMENTAL RESULTS

In this section, we present the experimental results on
video saliency detection to validate the performance of our
method. Section VI-A shows the settings of our method, and
Section VI-B discusses the parameter selection in our method.
Sections VI-C and VI-D compare the saliency detection results
by our and other 7 methods, over our and other 2 public
databases, respectively. For comparing the accuracy of saliency
detection, receiver operating characteristic (ROC) curves, the
equal error rate (EER), the area under ROC curve (AUC),
normalized scanpath saliency (NSS), linear correlation coef-
ficient (CC), and KL were measured on the saliency maps
generated by our and other 7 methods. Section VI-E evaluates
the performance of our method at different working conditions.

1We found out through experiments that t = 0.3 second makes the saliency
detection accuracy highest. So, time duration t of our forward smoothing was
set to be 0.3 in Section VI.
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Fig. 10. Performance comparison of our method (first column) and our single features (second to fourth columns) at different bit-rates. The bit-rates of each
video in our rate control are the same as those of fixed QPs, i.e., QP = 27, 32, 35, 37, 39, 42, and 47. Here, the bit-rates averaged over all 33 videos are
shown in the horizontal axis.

In Section VI-F, we demonstrate the effectiveness of each
single HEVC feature in saliency detection.

A. Setting on Encoding and Training

1) HEVC Configuration: Before saliency detection, the bit-
streams of both training and test videos were generated by the
HEVC encoder, for extracting features. In our experiments,
the HEVC reference software HM 16.0 [45] was used as the
HEVC encoder. Then, the HEVC bitstreams of all 33 videos
in our database were produced for both training and test.
In HM 16.0, the low delay (LD) P main configuration was
chosen. In addition, the latest R − λ rate control scheme [30]
was enabled in HM 16.0. Since the test videos are with diverse
content and resolutions, we followed the way of [30] to set the
bit-rates the same as those at fixed QPs. The CTU size was
set to 64 × 64 and maximum CTU depth was 3, to allow all
possible CTU partition structures for saliency detection. Each
group of picture (GOP) was composed of 4 P frames. Other
encoding parameters were set by default, using the common
encoder_lowdelay_P_main.cfg configuration file of HM.

2) Other Working Conditions: The implementation of our
method in random access (RA) configuration is to be presented
in Section VI-E. The rate control of RA in HM 16.0 was also
enabled. In our experiments, we set all other parameters of
RA via the encoder_randomaccess_main.cfg file. Note that
the GOP of RA is 8 B frames for HM 16.0. Section VI-E
further presents the saliency detection results of our method
for the bitstreams of x265, which is more practical than the
HM encoder from the aspects of encoding and decoding time.2

Here, x265 v1.8 encoder, embedded in the latest ffmpeg, was
applied. For x265, both LD and RA were tested. In x265,
the bit-rates were chosen using the same way as we applied
for HM 16.0. The GOP structure is 4 P frames for LD and
4 frames (BBBP) for RA. Other parameters were all set by
default in the ffmpeg with the x265 codec. It is worth pointing
out that the x265 codec was used to extract features from the
bitstreams encoded by x265, while the features of HM 16.0
bitstreams were extracted by the software of HM 16.0.

3) Training Setting: In order to train the C-SVC, our data-
base of Section III-A was divided into non-overlapping sets.
For the fair evaluation, 3-fold cross validation was conducted
in our experiments, and the averaged results are reported

2It takes around 100 seconds for HM to encode a 1080p video frame, in a
PC with Intel Core i7-4770 CPU and 16 GB RAM. By contrast, x265 adopts
parallel computing and fast methods to encode videos, such that real-time
4K HEVC encoding can be achieved by x265.

in Sections VI-B and VI-C. Specifically, our database was
equally partitioned into three non-overlapping sets. Then, two
sets were used as training data, and the remaining set was
retained for validating saliency detection. The cross validation
process is repeated by three folds, with each of the three
sets being used exactly once as the validation data. In the
training set, 3 pixels of each video frame were randomly
selected from top 5% salient regions of ground-truth fixation
maps as the positive samples. Similarly, 3 pixels of each video
frame were further chosen from bottom 70% salient regions
as negative samples. Then, both positive and negative samples
were available in each cross validation, to train the C-SVC
with (8).

B. Analysis on Parameter Selection

In HEVC, the bit allocation, splitting depth and MV of
each CTU may change along with increased or decreased bit-
rates. Therefore, we analyze the performance of our method
with regard to the videos compressed at different bit-rates.
Since the resolutions of test videos vary from 416 × 240 to
1920 × 1080, there is an issue on finding bit-rates suitable for
all videos to ensure proper visual quality. To solve such an
issue, we followed [30] in setting the bit-rates of each video
for rate control the same as those of fixed QPs. Then, we
report in Figure 10 the AUC, CC and NSS results of our
method at different bit-rates. Note that the bit-rates averaged
over all 33 videos are shown, varying from 2,068 kbps to
100 kbps. Figure 10 shows that our method achieves the best
performance in terms of CC and NSS, when the averaged
bit-rate of rate control is 430 kbps (equal to those of fixed
QP = 37). Therefore, such bit-rate setting is used for the
following evaluation. Figure 10 also shows that the bit-rates
have slight impact on the overall performance of our method
in terms of AUC, NSS, and CC. The minimum values of
AUC, NSS and CC are above 0.82, 1.52 and 0.41 at different
bit-rates, which are superior to all other methods reported
in Section VI-C. Besides, one may observe from Figure 10
that the saliency detection accuracy of some HEVC features
is fluctuating when the bit-rate is changed. Hence, this figure
suggests that our saliency detection should not rely on a single
feature. On the contrary, the combination of all features is
robust across various bit-rates, implying the benefit of applying
the C-SVC in learning to integrate all HEVC features for
saliency detection.

Next, we analyze the parameters of our saliency detec-
tion method. When computing the spatial difference features
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Fig. 11. Saliency detection performance of each single feature at different parameter settings. Note that only the AUC is utilized here to evaluate the saliency
detection performance. For other metrics (e.g., NSS and CC), similar results can be found for choosing the optimal values of parameters.

TABLE I

THE AVERAGED ACCURACY OF SALIENCY DETECTION BY OUR AND OTHER 7 METHODS, IN MEAN (STANDARD DEVIATION)
OF ALL TEST VIDEOS OF 3-FOLD CROSS VALIDATION OVER OUR DATABASE.

through (7), parameters ξd , ξb, and ξm were all traversed to
find the optimal values. The results are shown in Figure 11.
As can be seen in this figure, parameters ξd , ξb, and ξm

should be set to 13, 3 and 57 for optimizing saliency detection
results. In addition, the saliency detection accuracy of temporal
difference features almost reaches the maximum, when σd , σb

and σm of (4), (5) and (6) are equivalent to 46, 46 and 26.
Finally, we achieve the optimal parameter selection for the
following evaluation (i.e., ξd = 13, ξb = 3, ξm = 57, σd = 46,
σb = 46 and σm = 26 ).

The effectiveness of the center bias in saliency detection has
been verified in [46], as humans tend to pay more attention
on the center of the image/video than the surround. In this
paper, we follow [46] to impose the same center bias map B
to both our and other compared methods, for fair comparison.
Specifically, the center bias is based on the Euclidean distance
of each pixel to video frame center (ic, jc) as follows,

B(i, j) = 1 −
√

(i − ic)2 + ( j − jc)2
√

i2
c + j2

c

, (14)

where B(i, j) is the center bias value at pixel (i, j ). Then, the
detected saliency maps of all methods are weighted by the
above center bias maps.

C. Evaluation on Our Database

In this section, we evaluate the saliency detection accuracy
of our method, in comparison with other 7 state-of-the-art
methods,3 i.e., Itti’s model [10], Bayesian surprise [14],
Judd et al. [19], PQFT [16], Rudoy et al. [23], Fang et al. [27]
and OBDL [28]. Note that 3-fold cross validation was applied
in our database for evaluation, and the saliency detection
accuracy was averaged over the frames of all test videos of
3-fold cross validation. Furthermore, the saliency maps of

3In our experiments, we directly used the codes by the authors to implement
all methods except Fang et al. [27], which was realized by ourselves as the
code is not available online.

Fig. 12. ROC curves of saliency detection by our and other state-of-the-art
methods. Note that the results are averaged over frames of all test videos of
3-fold cross validation.

some selected video frames are provided for each cross
validation, to show the subjective saliency detection results
of our and other methods.

1) ROC Curves: The ROC curves of our and other 7 meth-
ods are shown in Figure 12, to evaluate the accuracy of
saliency detection in predicting human fixations. As can be
seen in this figure, our method generally has higher true
positive rates than others at the same false positive rates. In a
word, the ROC curves illustrate the superior performance of
our method in saliency detection.

2) AUC and EER: In order to quantify the ROC curves,
we report in Table I the AUC and EER results of our and
other 7 state-of-the-art methods. Here, both mean and standard
deviation are provided for the AUC and EER results of all
test video frames of 3-fold cross validation. This table shows
that our method performs better than all other 7 methods.
Specifically, there are 0.026 and 0.038 enhancement of AUC,
over Fang et al. [27] and OBDL [28], respectively, which also
work in compressed domain. The EER of our method has
0.028 and 0.036 decrease, compared with compressed domain
methods of [27] and [28]. Smaller EER means that there is
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Fig. 13. Saliency maps of four videos selected from the first time of our cross validation experiments. The maps were yielded by our and other 7 methods
as well the ground-truth human fixations. Note that the results of only one frame are shown for each selected video. (a) Input. (b) Human. (c) Our. (d) Itti.
(e) Surprise. (f) Judd. (g) PQFT. (h) Rudoy. (i) Fang. (j) OBDL.

a lower miss-classifying probability in our method when the
false positive rate equals to the false negative rate. The possible
reasons for the improvement of our method are: (1) the
new compressed domain features (i.e., CTU structure and bit
allocation) are developed in light of the latest HEVC standard;
(2) the camera motion has been removed in our method;
(3) the learning mechanism is incorporated into our method
to bridge the gap between HEVC features and human visual
attention. Besides, our method outperforms uncompressed
domain learning-based methods [19] and [23], with 0.007
and 0.038 improvement in AUC as well as 0.009 and 0.029
reduction in EER. This verifies the effectiveness of the newly
proposed features in compressed domain, which benefit from
the well developed HEVC standard. However, since extensive
high and middle level features are applied in [19], there
is little AUC improvement (around 0.007) of our method
over [19]. Generally speaking, our method outperforms all
other 7 methods, which are in compressed or uncompressed
domain.

3) NSS, CC, and KL: Now, we concentrate on the compar-
ison of NSS, CC, and KL metrics to evaluate the accuracy
of saliency detection on all test videos. The averaged results
(with their standard deviation) of NSS, CC and KL, by our and
other 7 state-of-the-art methods, are also reported in Table I.
Note that the method with a higher value of NSS, CC or KL,
can better predict the human fixations. Again, it can be seen
from Table I that our method improves the saliency detection
accuracy over all other methods, in terms of NSS, CC and KL.
Moreover, the improvement of NSS, CC and KL, especially
CC, is much larger than that of AUC.

4) Saliency Maps: Figure 13 shows the saliency maps
of 4 randomly selected test videos, detected by our and other
7 methods, as well as the ground-truth human fixation maps.
Note that the results of only one frame for each video are
shown in these figures. From these figures, one may observe
that in comparison with all other 7 methods, our method is
capable of well locating the saliency regions in a video frame,
much closer to the maps of human fixations. In summary,
the subjective results here, together with the objective results
above, demonstrate that our method is superior to other state-
of-the-art methods in our database.

5) Computational Time: For time efficiency evaluation, the
computational time of our and other methods have been

TABLE II

COMPUTATIONAL TIME PER VIDEO FRAME AVERAGED OVER

OUR DATABASE FOR OUR AND OTHER 7 METHODS

recorded4 and listed in Table II. We can see from this table that
our method ranks third in terms of computational speed, only
slower than Itti [10] and PQFT [16]. However, as discussed
above, the performance of Itti and PQFT is rather inferior
compared with other methods, and their saliency detection
accuracy is much lower than that of our method. In summary,
our method has high time efficiency with effective saliency
prediction performance. The main reason is that our method
benefits from the modern HEVC encoder and the learning
mechanism, thus not wasting much time on exploiting saliency
detection features. We further transplanted our method into
C++ program on the VS.net platform to figure out its potential
in real-time implementation. After the transplantation, our
method consumes averaged 140 ms per frame over all videos
of our database, and achieves real-time detection for 480p
videos at 30 frame per second (fps). It is worth pointing
out that some speeding-up techniques, like parallel computing,
may further reduce the computational time of our method for
real-time saliency detection of high resolution videos.

D. Evaluation on Other Database

For evaluating the generalization of our method, we com-
pared our and other 7 methods on all videos of SFU [41] and
DIEM [42], which are two widely used databases. In DIEM,
the first 300 frames of each video were tested for matching the
length of videos in SFU and our databases. Here, all 33 videos
of our database were selected for training the C-SVC classifier.
Table III presents the saliency detection accuracy of our and
other methods over the SFU and DIEM databases. Again, our
method performs much better than others in terms of all five
metrics. Although the C-SVC was trained on our database,
our method still significantly outperforms all 7 conventional
methods over other databases.

4All methods were run in the same environment: Matlab 2012b at a
computer with Intel Core i7-4770 CPU@3.4 GHz and 16 GB RAM.
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TABLE III

MEAN (STANDARD DEVIATION) VALUES FOR SALIENCY DETECTION ACCURACY OF OUR AND OTHER METHODS OVER SFU AND DIEM DATABASES

TABLE IV

COMPARISON TO THE RESULTS REPORTED IN [23]

Although above results were mainly upon the codes by their
authors, it is more fair to compare with the results reported
in their literature. However, it is hard to find the literature
reporting the results of all 7 methods on a same database. Due
to this, we only compare to the reported results of the method
with top performance. We can see from Tables I and III that
among all methods we compared, Rudoy et al. [23] generally
ranks highest in our, SFU and DIEM databases. Thus, we
implemented our method on the same database as
Rudoy et al. [23] (also the DIEM database), and then
we compared the results of our method to those of PQFT [16]
and Rudoy et al. [23], which were reported in [23]. The
comparison is provided in Table IV. Note that the comparison
is in terms of median shuffled-AUC, as shuffled version of
AUC was measured with median values available in [23].
Note that shuffled-AUC is much smaller than AUC, due to
the removed center bias prior. We can see from Table IV that
our method again performs better than [16] and [23].

E. Evaluation on Other Work Conditions

For further assessing the generalization of our method, we
extended the implementation of our method at different HEVC
working conditions. The working conditions include HM 16.0
and x265 v1.8 encoders, at both LD and RA configurations.
We have discussed the parameter settings of these working
conditions in Section VI-A. The rate control at these working
conditions was also enabled, with the bit-rates the same as
above.

Figure 14 compares the saliency detection performance of
our method applied to HM and x265 encoders with LD and
RA configurations. The performance is evaluated in terms of
AUC, CC, NSS and KL, averaged over all videos of the three
databases, i.e., our, SFU and DIEM databases. The results of
Rudoy et al. [23] and Fang et al. [27] are also provided in
this figure as the reference. As seen from Figure 14, although
our method in RA performs a bit worse than that in LD, it
is much superior to other state-of-the-art methods. We can

Fig. 14. Performance of our method at different working conditions,
compared with Rudoy et al. [23] and Fang et al. [27]. The performance is
assessed in terms of AUC, NSS, CC and KL, averaged over all videos of our,
SFU, and DIEM databases.

further see from Figure 14 that the performance of our method
slightly decreases, when using x265 bitstreams instead of
HM bitstreams. Such a slight decrease is probably due to
the simplified process of x265 over HM. More importantly,
when applied to x265 bitstreams, our method still significantly
outperforms other methods. In summary, our method is robust
to different working conditions.

F. Effectiveness of Single Features and Learning Algorithm

It is interesting to investigate the effectiveness of each
HEVC feature in our method. We utilized each single feature
of our method to detect saliency of all 33 videos from our
database. Since the learning process is not required when
evaluating each feature of our method, all 33 videos of
our database were tested here without any cross validation.
In Table V, we tabulate the saliency detection accuracy of each
single feature, measured by AUC, NSS, CC, KL, and EER.
This table shows that the AUC results of all 9 HEVC features
in our method are significantly better than that of random hit,
the AUC of which is 0.5. This confirms that the HEVC encoder
can be utilized as an effective feature extractor for saliency
detection. Besides, it can be clearly observed from this table
that the accuracy of bit allocation related features ranks the
highest among all features. Therefore, we can conclude that the
bit allocation of HEVC is rather effective in saliency detection,
compared to other HEVC features.

Furthermore, Figure 15 evaluates the robustness of each
single feature across various working conditions (HM+LD,
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TABLE V

MEAN (STANDARD DEVIATION) VALUES FOR SALIENCY DETECTION ACCURACY BY EACH SINGLE FEATURE OF OUR METHOD,
AVERAGED OVER THE FRAMES OF ALL 33 TEST VIDEOS

TABLE VI

THE AVERAGED ACCURACY OF SALIENCY DETECTION BY OUR METHOD WITH C-SVC AND EQUAL WEIGHT

Fig. 15. AUC curves of saliency detection by each single feature and feature
combination. Six comb. and nine comb. mean the results of saliency detection
by 6 features (excluding features of splitting depth) and by all 9 features,
respectively. Similar results can be found for other metrics, e.g. CC.

HM+RA, x265+LD and x265+RA). Here, the evaluation is
performed on AUC averaged all 33 videos of our database.
We can see that the AUC of each single feature, especially
the features of splitting depth, varies at different working
conditions. This implies that each single feature relies on the
working conditions. Benefitting from the machine learning
power of the C-SVC (presented in Section V), the performance
of combining all features is significantly more robust than a
single feature as shown in Figure 15. Since the splitting depth
is least robust across various working conditions, we plot in
Figure 15 the AUC values of integrating 6 features (excluding
spitting depth related features). It shows that the integration of
6 features underperforms the integration of all 9 features for
all working conditions. Thus, we can validate that the features
of spitting depth are able to improve the overall performance
of our method at various working conditions.

Finally, it is necessary to verify the effectiveness of the
C-SVC learning algorithm in our method, since it bridges
the gap between the proposed HEVC features and saliency.
Provided that the learning algorithm is not incorporated, equal
weighting is a common way for feature integration (e.g.,
in [10]). Table VI compares saliency detection results of our
method with the C-SVC learning algorithm and with equal
weighting. As can be seen in this table, the C-SVC produces

significantly better results in all metrics, compared with the
equal weight integration. This indicates the effectiveness of
the learning algorithm applied in our method for saliency
detection.

VII. CONCLUSION AND FUTURE WORK

In this paper, we found out that the state-of-the-art HEVC
encoder is not only efficient in video coding, but also effective
in providing the useful features in saliency detection. There-
fore, this paper has proposed a novel method for learning to
detect video saliency with several HEVC features. Specifically,
to facilitate the study on video saliency detection, we first
established an eye tracking database on viewing 33 uncom-
pressed videos from test sets commonly used for HEVC
evaluation. The statistical analysis on our database revealed
that human fixations tend to fall into the regions with the
high-valued HEVC features of splitting depth, bit allocation,
and MV. Besides, three observations were also found from
our eye tracking database. According to the analysis and
observations, we proposed to extract and then compute several
HEVC features, on the basis of splitting depth, bit allocation,
and MV. Next, we developed the C-SVC, as a non-linear SVM
classifier, to learn the model of video saliency with regard
to the proposed HEVC features. Finally, the experimental
results verified that our method outperforms other state-of-the-
art saliency detection methods, in terms of ROC, EER, AUC,
CC, NSS, and KL metrics.

In reality, almost all videos exist in the form of bitstreams,
generated by video coding techniques. Since HEVC is the
latest video coding standard, there is no doubt that the HEVC
bitstreams will be prevalent in the near future. Accordingly,
our method, performed in HEVC domain, is more practicable
over other state-of-the-art uncompressed domain methods, as
both time and storage complexity on decompressing videos
can be saved.

There exist three directions for the future work. (1) Our
work in its present form merely concentrates on the bottom-
up model to predict video saliency. In fact, videos usually
contain some top-down cues indicating salient regions, such
as human faces. Indeed, an ideal vision system, like the one
of humans, requires the information flow in both directions of
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TABLE VII

THE EVALUATION RESULTS OF CAMERA MOTION ESTIMATION FOR VIDEOS OF FIGURE 7 (FROM LEFT TO RIGHT)

bottom-up and top-down. Hence, the protocol, integrating the
top-down model into our bottom-up saliency detection method,
shows a promising trend in future. (2) Many advanced tracking
filters (e.g., Kalman filter and particle filter) have emerged
during the past few decades. It is quite an interesting future
work to incorporate our method with those filters, rather than
the forward smoothing filter of this paper. In that case, the
performance of our method may be further improved. (3) A
simple SVM learning algorithm, the C-SVC, was developed
in our work for video saliency detection. Other state-of-the-art
machine learning techniques may be applied to improve the
accuracy of saliency detection, and it can be seen as another
promising future work.

APPENDIX

EVALUATION ON CAMERA MOTION ESTIMATION

Annotation: In this appendix, we evaluate the accuracy of
camera motion estimated by our voting algorithm. Before the
evaluation, the ground truth of camera motion needs to be
obtained. Since it is intractable to obtain the camera motion
data recorded during video shooting, we manually annotated
camera motion to approximate the ground truth. Due to space
limitation, we only show annotation results of seven videos in
Figure 7. Among them, six videos were randomly selected
from those containing frames with camera motions in our
database. Besides, one video was randomly selected from other
videos in our database, which is without any camera motion.
Next, every 10 frames5 of those six videos with camera motion
were labeled by hand with 0 for static camera and 1 for moving
camera. Among those frames labeled as moving camera, we
further annotated the vectors of camera motion to be the
ground truth. The annotation of camera motion vectors is
conducted by manually finding 5 matched pairs of key points
at background (the motion of which is only caused by camera),
across two frames. At last, the motions between matched
points were measured for each pair, and then averaged over
5 pairs as the annotated camera motion vector between those
two frames. The annotated ground truth of camera motion is
also available in our website, along with our database.

Evaluation: Given the above annotation, the accuracy of
camera motion detected by our voting algorithm is justified
from both subjective and objective aspects. The subjective
results of Figure 7 illustrate that our algorithm is able to
estimate the ground truth of camera motion with high accuracy.
We further quantify the accuracy of camera motion estimation.
Table VII reports the measured precision and recall on detect-
ing whether camera is moving or not for the frames of the

5It is because the camera motion between two consecutive frames is too
small to be annotated.

videos in Figure 7. Note that only some of frames in those
videos are with nonzero camera motion. We can see from this
table that our algorithm is capable of classifying the frames to
be with or without camera motion (98.8% for precision and
96.0% for recall). Additionally, we evaluate camera motion
vectors estimated by our algorithm, in terms of both distance
and angle errors. Here, distance error Ed and angle error Ea

are defined by

Ed =
|
√

(mx)2 + (my)2 −
√

(m̂x)2 + (m̂ y)2|
√

(mx )2 + (my)2
, (15)

and

Ea = | arctan
my

mx
− arctan

m̂ y

m̂x
|, (16)

where (mx , my) and (m̂x , m̂ y) stand for the annotated and
estimated camera motion vectors, respectively. We can observe
from Table VII that the errors between estimated and annotated
camera motion vectors are rather small. To be more specific,
the averaged distance error is 8.61%, and the averaged angle
error is around 1 degree. In summary, we can draw a conclu-
sion that our voting algorithm is effective in estimating camera
motion of videos.
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