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Abstract— This paper focuses on fusing hyperspectral and
multispectral images with an unknown arbitrary point spread
function (PSF). Instead of obtaining the fused image based on the
estimation of the PSF, a novel model is proposed without inter-
vention of the PSF under Bayesian framework, in which the fused
image is decomposed into double subspace-constrained matrix-
factorization-based components and residuals. On the basis of the
model, the fusion problem is cast as a minimum mean square
error estimator of three factor matrices. Then, to approximate the
posterior distribution of the unknowns efficiently, an estimation
approach is developed based on variational Bayesian inference.
Different from most previous works, the PSF is not required in
the proposed model and is not pre-assumed to be spatially invari-
ant. Hence, the proposed approach is not related to the estimation
errors of the PSF and has potential computational benefits when
extended to spatially variant imaging system. Moreover, model
parameters in our approach are less dependent on the input
data sets and most of them can be learned automatically without
manual intervention. Exhaustive experiments on three data sets
verify that our approach shows excellent performance and more
robustness to the noise with acceptable computational complexity,
compared with other state-of-the-art methods.

Index Terms— Double matrix factorization, image fusion,
subspace-constrained image model, variational Bayesian
inference.

I. INTRODUCTION

SPECTRAL images play an important role in many com-
puter vision tasks like classification and recognition, espe-

cially in remote sensing and medical imaging [1]. How-
ever, obtaining high spectral and spatial resolution versions
of such images is not an easy task, since there always
exists a tradeoff between the resolutions of spectra and
space in the manufactured device. Moreover, constraints of
communication and budget on the satellite aggravate the
resolution due to the limited communication bandwidth and
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energy cost, respectively [2], [3]. To meet the requirement in
some applications, pan-sharpening, a postprocessing method,
is developed, serving as a solution to yield the high-resolution
multispectral image (MSI) by merging a low spatial resolution
spectral image and a high spatial resolution panchromatic
image [3]–[5]. Most recently, this technique has been extended
to hyperspectral image (HIS) and MSI fusion after years of
development [6]. As a result, a great challenge is launched
that higher fusion quality and lower computational complexity
are called up on the fusion methods, when facing problems of
reconstructing images of tens or hundreds of spectral channels.

There have been many studies on the HSI fusion. As this
issue is in fact an ill-posed inverse problem, a rational prior
model on the high-resolution HSI is the corresponding bottle-
neck [6], [7]. Early researches mostly focus on projection and
substitution [8], including principal component analysis [9]
and wavelet decomposition [10]–[12]. They usually discuss
the fusion problem under a low-dimensional spectral subspace.
As obtaining the subspace is equivalent to dimensionality
reduction, these methods are of low computational complexity.
Unfortunately, they show unsatisfactory performance in fusion
quality, as subspace regulation is a strong constraint for
spectral image, which will complicate the coefficient modeling
and easily cause spectral distortion [7]. Furthermore, it has
been reported that this modeling is opposite to the physical
imaging law [13].

To overcome the drawback above, various methods have
been proposed [2]–[7], [13]–[24], among which the matrix
factorization (MF) methods are the successful ones. This kind
of methods factorizes a high-resolution image into double mul-
tiplied matrices [25], the spectral matrix, and the abundance
matrix [19], which are based on the linear spectral mixture
model used for spectral unmixing [20]. Then, by modeling the
fusion issue as a biconvex optimization problem, the optimal
values of two factor matrices can be obtained. Obviously,
different priors on the factor matrices lead to different fusion
methods, and so far as we have known, the widely adopted
priors include sparse priors (e.g., l0-sparse-representation [21],
l1-Laplace priors [22], [23], and “spike-and-slab” priors [3]),
low rank priors [16], [26], l2-Gaussian priors [18], model-
based priors [6], and so on.

However, three problems arise when most of the above
methods are put into implementation. First, the relative point
spread function (PSF) required in these methods, also called
the blurring matrix, is usually defined based on the spa-
tially invariant Gaussian hypothesis to accelerate the fusion
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Fig. 1. (a) Proposed image model is decomposed into (b)–(d) three components. (a) and (b) False color. (a) High-resolution HSI, Z, acquired by AVIRIS
over Indian Pines with 220 spectral bands. (b) Degraded HSI, HU′W. (c) Compensation component, HU′V132. . (d) Residual component, R132..

methods [27]. But this hypothesis would probably aggravate
the fusion performance for spatially varying imaging systems.
Second, the relative PSF is hard to accurately measure in
practice. Although previous works propose many methods to
estimate the PSF [28]–[31], estimation errors vary with signal-
to-noise ratio (SNR) and will be propagated to the fusion
procedure, leading to deterioration of the fusion robustness to
the noise. Furthermore, it consumes lots of memory to store
the PSF for spatially varying imaging systems, since the PSFs
at different pixel locations are different from each other. Third,
results of these methods are dependent on the introduced
regularization parameters that have to be set manually by
experiments on relevant data sets. Once the parameters are
not tuned carefully or the input images are not similar to that
in the simulation, fusion qualities are poor despite that the
results are optimal under the optimization framework.

In this paper, we discuss the fusion problem under an
unknown arbitrary PSF. Instead of fusing images based on
the estimated PSF, we develop a novel fusion model without
intervention of the PSF. Specifically, the fused HSI is decom-
posed into a degraded image, a compensation component,
and residuals (see Fig. 1), while the degraded image and the
compensation component are modeled by double MF, sharing
the same spectral feature matrix, restricted by an independently
estimated spectral subspace. Then, we introduce priors for
factor matrices, impose hyperpriors on hyperparameters, and
cast the fusion problem as a minimum mean square error
(MMSE) estimator under Bayesian framework. Finally, a vari-
ational inference approach is devised to efficiently obtain the
fusion result. The main advantages of our framework can be
summarized as follows.

1) A potentially spatially varying system PSF can be incor-
porated into the framework with no sacrifice in compu-
tational time, since no spatially invariant assumption is
made on the PSF in our model.

2) As the PSF is not required in our model, the memory of
the PSF can be saved, and there do not exist estimation
errors of the PSF, let alone the influence of estimation
errors on the fusion performance.

3) To avoid manually tuning hyperparameters, hyperpriors
have been introduced. So all hyperparameters can be
automatically learned to adapt to a wide range of SNRs
during the inference process.

The remainder of this paper is organized as follows.
Section II formulates the problem in mathematical forms
and illustrates the proposed Bayesian model in detail.
In Section III, we show our variational expectation-
maximization (EM) approach and analyze the corresponding
computational complexity. Experimental results and compar-
isons are given in Section IV and the conclusion is drawn in
Section V.

II. PROBLEM STATEMENT AND BAYESIAN MODELING

A. Problem Description and Notations

Let X ∈ R
L×mn denote a m-by-n HSI with L channel bands

and let Y ∈ R
l×M N denote a high spatial resolution MSI with

the size of M × N × l. Apparently, the image Y features l
bands and l < L, n < N , and m < M . Then, the fused HSI is
denoted by Z ∈ R

L×M N . Many works have pointed out that
the relationship among X, Y, and Z satisfies [28], [32]–[34]

X = ZG + NX , and Y = FZ + NY (1)

wherein F ∈ R
l×L denotes the spectral response matrix, while

G ∈ R
M N×mn models the effect of both optic blurring and

down-sampling. NX and NY are additive perturbations caused
by the measurements. In most researches, the PSF is assumed
to be a spatially invariant kernel. In this case, G can be
factored into a block-circulant matrix with circulant blocks
and a down-sampling matrix. Thus, the computation of matrix-
vector multiplication can be accelerated using fast Fourier
transformation [35], [36]. Unfortunately, the mentioned factor-
ization of G fails to work when the imaging system is spatially
variant [31]. Moreover, in practice, it is hard to accurately
obtain G from the image data with noise, and estimation errors
of G can easily lead to poor robustness of fusion methods.
As a result, this paper attempts to discuss the fusion problem,
reconstructing the HSI, Z, without intervention of G. Since the
problem is ill-posed, we choose the Bayesian methodology to
analyze the problem due to its convenience and efficiency [18].

In Bayesian framework, the images X,Y, and Z are
regarded as random variables. Let L(Z, Ẑ) denote the loss
function between the estimated image Ẑ and the true image Z.
Then, the problem above turns to a Bayesian estimator that
minimizes the loss expectation E[L(Z, Ẑ)|X,Y]. This paper
focuses on the MMSE estimation, i.e., L(Z, Ẑ) = ‖Z − Ẑ‖2

F ,
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TABLE I

NOTATIONS

and the estimation can be formulated as the following opti-
mization problem:

arg
Ẑ

min
∫

Z
‖Ẑ − Z‖2

F f (Z|X,Y) �⇒ Ẑ = E[Z|X,Y].

Obviously, the joint distribution f (Z,X,Y) is the key to
solve the above problem, and this distribution depends on the
designed modeling shown in the following section. As there
exist many mathematical operators in the following passage,
for convenience, we list the notations of our paper in Table I.

B. Proposed Subspace-Based Image Model

As has been pointed out, the spectral vector of each pixel in
the HSI Z lives in a much low-dimensional manifold. Previous
works have proved that the manifold can be modeled by
probabilistic MF (PMF) [33], [38], [39]. Let D ∈ R

r×L and
T ∈ R

r×M N be latent spectral and texture feature matrices,
with column vectors D.i and T. j representing spectral-specific
and texture-specific latent feature vectors, respectively. Then, r
represents the number of latent feature components. According
to [38], [39]

Z = D′T + N (2)

where N denotes the residual out of the PMF model. However,
in this paper, simply resorting to (1) and (2) cannot solve
the fusion problem, since G is unknown and is not expected
to be estimated from the data as introduced in Section II-A.
Furthermore, as X and Y are correlated by F and G, respec-
tively in (1), posteriors of D and T obtained based on (1)
and (2) are also related to G and F. These two posteriors
tend to be extremely high-dimensional Gaussian distributions
with big covariance matrices, which will result in unacceptable
computational complexity in Bayesian inference.

To overcome the above problems, we introduce dimen-
sionality reduction for D, i.e., D = UH′, U ∈ R

r×d , and
decompose T into two texture feature matrices, W ∈ R

r×M N

and V ∈ R
r×M N , as shown in the following equation:

Z = HU′T + R = HU′(W + V)+ R (3)

where H ∈ R
L×d is a known spectral matrix obtained by

truncated singular value decomposition (SVD) [40] or vertex
component analysis (VCA) on the image X [41] and R is
the residual out of framework. The proposed model has the
following distinctive features.

First, U is introduced to replace the latent spectral feature
matrix D. From (3), we can easily find that its element Ui j

represents how the j th spectral basis H. j makes contribution
to the i th latent texture feature component Ti., 1 ≤ i ≤ r ,
1 ≤ j ≤ d . Apparently, the row dimension of U represents
the number of latent feature components, while the column
dimension of U represents the dimension of spectral sub-
space H. When r ≤ d , the rank of D mainly depends on r , and
the proposed model is mathematically equivalent to the PMF
model. According to [38], the larger r , the more powerful
regression ability of the model. However, when r > d , latent
spectral feature components {D′

1,D′
2., . . . ,D′

r.} are linearly
dependent due to the rank-deficiency of D [42], and they are
more like atoms of a spectral dictionary. Since no literature
explores this special case, the corresponding performance will
be further discussed based on experiments in Section IV-B.

Second, W and V are introduced to replace the latent texture
feature matrix T, and they are assumed to have different
physical meanings: W represents the latent texture feature
in a degraded image while V represents the compensation
texture feature lost in a degraded image. This modeling in
fact decomposes the high spatial resolution HSI into dou-
ble matrix-factorization-based components, HU′W and HU′V
(see Fig. 1): HU′W is a degraded image mainly containing low
spatial frequency components while HU′V is a compensation
matrix, which mainly contains high-frequency information
(e.g., the edge compensation information of an image). Obvi-
ously, two different kinds of texture information are separated
by this decomposition. In the following section, it can be found
that this decomposition facilitates the modeling of sensor
observations without intervention of G.

C. Sensor Observation Models via Matrix Factorizations
On the basis of the proposed image model, the prior distrib-

utions on the images X and Y are analyzed. According to (1),
these two images can be regarded as projection observations
of Z. It is easy to find that X mainly contains the component
of HU′W, while Y contains the components of both HU′W
and HU′V. Unfortunately, in this paper, the matrix G is
assumed unknown and its down-sampling effect widens the
dimension gap between X and HU′W, leading to the difficulty
of observation modeling. To overcome these issues, X is
upsampled. Let G̃ ∈ R

M N×M N denote the effect of both G
and upsampling, and let ÑX denote the sum of RG̃ and the
upsampled perturbation for NX . Then, the resampled image
X̃ ∈ R

L×M N satisfies X̃ = HU′TG̃ + ÑX . As G̃ can also be
regarded as an unknown degradation function, according to
Section II-B, the resampled image X̃ can be directly taken as
the degraded image (HU′W) added with the noise ÑX .

Therefore, considering (1) and (3), the mathematical rela-
tionship of X̃ and Y is formulated as follows, where
ÑY = NY + FR :

X̃ = HU′W + ÑX , and Y = FHU′T + ÑY . (4)
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Obviously, in (4), ÑX and ÑY relate to each other for
they all contain the residual R. Although the residual is kept
for analysis and is assumed to have a sparse prior in some
works [39], [43], estimation of this variable will bring in a
nonnegligible computational burden. Furthermore, according
to Section II-B, the values of residual can be reduced by
enhancing d and r , and it has few impact on the regression
performance when d and r are large [38], [39]. Consequently,
we neglect the residual and assume that ÑX and ÑY are
independent isotropic Gaussian noise, i.e., ÑXi j ∼ N (0, α−1

x )

and ÑY i j ∼ N (0, α−1
y ). Then, the distributions of sensor

observations are found as follows:

X̃|U,W ∼
M N∏
j=1

N (X̃. j |HU′W. j , α
−1
x IL

)
(5)

Y|U,T ∼
M N∏
j=1

N (Y. j |FHU′T. j , α−1
y Il

)
. (6)

D. Prior Distributions for Factor Matrices

Three factor matrices, U,V, and W, are unknown vari-
ables in the observation distributions (5) and (6). To make
full use of their uncertain knowledge and avoid overfitting,
prior distributions have to be introduced. We assume that
these three matrices have isotropic Gaussian distributions,
that is

� ∼
∏

j

N (
�. j |0, α−1

θ IK
)
, � ∈ {U,V,W}. (7)

These assumptions have been adopted in Bayesian RPCA [43]
and PMF [38], [44]. Recent work even introduces them for HSI
restoration [39]. As the size of U ∈ R

r×d is hard to model,
it will be set manually instead.

E. Hyperpriors on the Hyperparameters

Many hyperparameters are introduced in Section II-D.
If they are all tuned manually, a complicate solution has to be
given on the selection of parameters. Fortunately, hyperpriors
can be introduced to learn the hyperparameters automatically
in Bayesian framework. Let � denote the set of all introduced
hyperparameters. Then, Gamma distributions are employed for
them, i.e., ∀αx ∈ � , αx ∼ �(ax , bx)

�(αx |ax , bx) ∝ αax −1
x exp[−αxbx ]. (8)

The above parameters ax and bx are usually set to small values
deterministically to avoid broad hyperpriors. In this paper, they
are all set to 10−6.

Combining (5)–(8), we finally obtain the joint distribution
as (9)

f (X̃,Y,�,�) = f (X̃|U,W) f (Y|U,T)

×
∏
�∈�

f (�|�)
∏
α∈�

f (α) (9)

� = {U,V,W}, � = {αx , αy, αu, αv , αw}.

III. VARIATIONAL-EM-BASED FUSION APPROACH

According to Section II, as Z ≈ HU′(W + V), the calcula-
tion of E[Z|X,Y] is approximately equivalent to the calcula-
tion of E[�,�|X̃,Y]. To obtain E[�,�|X̃,Y], the conditional
posterior f (�,�|X̃,Y) has to be given. Unfortunately, exact
Bayesian inference for f (�,�|X̃,Y) is not practical, since
there exists an intractable integral,

∫
�,� f (X̃,Y,�,�)d�d�,

in the following inference process:

f (�,�|X̃,Y) = f (X̃,Y,�,�)∫
�,� f (X̃,Y,�,�)d�d�

. (10)

Although the Markov chain Monte Carlo methods can the-
oretically estimate the exact value of the above expectation,
its convergence is much slower and hard to guarantee [45].
Furthermore, it makes less sense to accurately obtain the
value of E[�,�|X̃,Y], since all mathematical models in
Section II are proposed statistically and they do not always
work perfectly in the actual situation. Therefore, instead of
exactly figuring out f (�,�|X̃,Y), we estimate the posterior
approximately based on mean-field variational Bayes that is
also called variational EM algorithm [45], [46].

The key idea of variational EM algorithm is to
construct an approximate distribution, which has the minimal
Kullback-Leibler divergence from the true posterior distribu-
tion. In the problem of this paper, let f̂ (�,�|X̃,Y) denote the
approximate posterior distribution. Then, the corresponding
Kullback-Leibler divergence is written as

DKL =
∫

�,�
f̂ (�,�|X̃,Y)log

f̂ (�,�|X̃,Y)

f (�,�|X̃,Y)
d�d�. (11)

To solve the above minimal problem, the approximate distri-
bution is usually assumed as the following form [45]:

f̂ (�,�|X̃,Y) =
∏
�∈�

q(�)
∏
ψ∈�

q(ψ) (12)

where q(·) is the approximate posterior of the corresponding
random variable. This assumption is equivalent to the case that
elements in � ∪� are independent of each other with known
X̃ and Y. Using the calculus of variations, the posterior q(φ)
of each φ ∈ � ∪� can be formulated as follows:

ln q(φ) = E[ln f (X̃,Y,�,�) | φ, X̃,Y] + constant. (13)

Then, the posteriors of all random variables can be obtained
by updating the above equation based on (9) iteratively. It is
easy to find that this algorithm is more effective to avoid
undesired local minima, since it approximates the posterior
of each variable instead of finding peak point of the optimal
function [47]. On the basis of (13), the approximate posterior
of each variable is derived as follows.

A. Updating the Approximate Posterior of U

From (13), the approximate posterior of U is found as

ln q(U) ∝ −1

2
E[αy‖Y − FHU′T‖2

F

+ αx‖X̃ − HU′W‖2
F + αu‖U‖2

F | X̃,Y,U,�].
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Fig. 2. Summary of the proposed variational-inference-based approach.

In the above equation, different columns of U are correlated
by H and FH, while different rows of U are correlated
by W and T. As the result, U has to be vectorized so
that its distribution can be easily modeled. Resorting to
the vec-operator [48], the approximate posterior of U is
derived as

q(U) = q(vec[U]) ∼ N (vec[U],�∗
u

)
vec[U] = �∗

uvec[αx WX̃
′
H + αyTY

′
FH]

�∗
u = (αxH′H ⊗ WW′ + αyH′F′FH ⊗ TT′ + αuIdr )

−1.

(14)

U�U′ is required for other approximate posteriors, wherein
� ∈ R

d×d is a known matrix and � = H′F′FH or H′H or I.
But it cannot be derived by easily substituting the expectation
of each variable due to the correlation among elements in
the matrix-variable. To calculate U�U′, the covariance �∗

u ∈
R

dr×dr has to be partitioned into d2 r × r sub-matrices
[�∗

u]i j
r×r , which can be written as

�∗
u =

⎡
⎢⎢⎣
[
�∗

u

]11
r×r · · · [

�∗
u

]1d
r×r

...
. . .

...[
�∗

u

]d1
r×r · · · [

�∗
u

]dd
r×r

⎤
⎥⎥⎦ .

Then, using the above partitioned matrix, U�U′ is found as
follows:

U�U′ = U�U′ +
d∑

i=1

d∑
j=1

�i j
[
�∗

u

]i j
r×r . (15)

B. Updating the Approximate Posteriors of W and V

As T = W + V, W and V feature similar locations in (5)
and (6). According to (13), their posteriors have similar forms

and can be represented by

ln q(W) ∝ −1

2
E[αy‖Y − FHU′(W + V)‖2

F

+ αx‖X̃ − HU′W‖2
F + αw‖W‖2

F | X̃,Y,W,�]

ln q(V) ∝ −1

2
E[αy‖Y − FHU′(W + V)‖2

F

+ αv‖V‖2
F | X̃,Y,V,�].

The above equations show that different columns in W and V
are independent of each other, and elements in a column are
drawn from the corresponding Gaussian distributions found as
follows:

q(W. j ) ∼ N (W. j ,�
∗
w

)
(16)

�∗
w = (αx UH′HU′ + αyUH′F′FHU′ + αwIr )

−1

W = �∗
w[UH′(αx X̃ + αyF′Y)+ αyUH′F′FHU′ · V]

q(V. j ) ∼ N (V. j ,�
∗
v ) (17)

�∗
v = (αyUH′F′FHU′ + αv Ir )

−1

V = αy�
∗
w[UH′F′Y + UH′F′FHU′ · W].

From (16) and (17), it can be found that elements in
each column of W (or V) are not independent to each
other. Thus, the calculation of WW′ cannot be obtained
by simply multiplying W and W′ together. So does the
calculation of VV′. Considering the covariance �∗

w and
�∗
v , the values of WW′ and TT′ in (14) should be calcu-

lated as follows, in which the dot operator denotes matrix
multiplication:

WW′ = W · W′ + M N�∗
w (18)

TT′ = (W + V)(W + V)′ + M N
(
�∗
w + �∗

v

)
. (19)

C. Updating the Approximate Posteriors of Hyperparameters

As Gamma distribution is conjugate to Gaussian distribu-
tion, the approximate posteriors of all hyperparameters are still
found as Gamma distributions [45]. From (8) and (13), means
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of hyperparameters are calculated as

αx = 10−6 + M N L/2

10−6 + E‖X̃ − HU′W‖2
F/2

(20)

αy = 10−6 + M Nl/2

10−6 + E‖Y − FHU′T‖2
F/2

(21)

αθ = 10−6 + dim[�]/2
10−6 + tr[		′]/2 , � ∈ �, αθ ∈ {αu, αv , αw}. (22)

The steps of the proposed variational approach are sum-
marized in Fig. 2. The high spatial resolution HSI is
finally estimated based on the means of all factor matrices
as Ẑ = HU

′
(W + V).

D. Analysis of Computational Complexity

The approximations of the above posterior distributions have
different orders of computational complexity: Updating q(U)
has the order of complexity O(rd M N), while updating q(W),
q(V), and posteriors of all hyperparameters has the same order
of complexity O(L M N max(d, r)). Let 
 denote the iteration
number, and max(d, r) < L. Then, considering all above
orders of complexity, the proposed approach has the order of
complexity O(L M N
max(d, r)).

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experiment Scenario and Evaluation

In order to use a reference image for quality assessment,
a semi-synthetic simulation method based on Wald’s proto-
col [49] is used for experiments [32]. In the simulation, a real-
life HSI is taken as the ground truth. Low spatial resolution
HSI is generated by downsampling the blurred version of the
real-life HSI, while the high spatial resolution MSI is obtained
by simulating the spectral response on the ground-truth image.

In our experiment, to validate the proposed method, three
real-life data sets with different spectral channel bands
are adopted, including the Balloons, the Pavia University
(PaviaU), and the Moffett data sets. The first data set, the Bal-
loons, is a 512×512×31 HSI with 31 spectral channel bands,
ranging from 400 to 700 nm at 10-nm intervals in wavelength.
It is acquired by a generalized assorted pixel camera [50].
As a classic static scene of the CAVE database [50], this
data set has been widely used for evaluation of HS and RGB
image fusion in many similar works [19], [33], [34], [51].
We generate the corresponding RGB images based on the
Nikon D700 camera’s spectral response.1 Then, a low spatial
resolution 64 × 64 × 31 HSI is created by adopting a 16 × 16
Gaussian kernel with the variance of 3.40.

The other two data sets, the PaviaU2 and the Moffett data
sets, are obtained by the reflective optics system imaging
spectrometer (ROSIS)3 and the NASA’s Airborne Visible

1Available at http://www.maxmax.com/spectral_response.htm
2The Pavia University image can be found at http://www.ehu.eus/ccwintco/

index.php?title=Hyperspectral_Remote_Sensing_Scenes.
3More information about ROSIS can be found at the following

website: http://messtec.dlr.de/en/technology/dlr-remote-sensing-technology-
institute/hyperspectral-systems-airborne-rosis-hyspex/index.php

Infrared Imaging Spectrometer (AVIRIS),4 respectively. These
two data sets are popular in remote sensing image processing.
The former has 115 spectral channel bands ranging from 430
to 860 nm, while the latter has 224 spectral channel bands
ranging 400–2500 nm with 10-nm intervals. To ensure the
image quality, low-quality spectral bands caused by the water
absorptions have to be removed, which reduces the spectral
bands of these two images to 93 and 188. For simplicity,
we set the spatial size of these two images to 240 × 240
and generate the corresponding HSIs with the 48 × 48 spatial
size using a 9 × 9 Gaussian kernel with a variance of 2.12.
IKONOS-like spectral response is adopted to generate the MSI
for the PaviaU image while six bands of the Moffett image
corresponding to the wavelengths 480, 560, 660, 830, 1650,
and 2220 nm are directly chosen to simulate the MSI acquired
by the USGS/NASA Landsat 7 satellite.

To simulate the perturbations for three data sets, white
Gaussian noise is added to generated images according to (1),
and the SNRs of HS and MS (or RGB) images are denoted by
SNRh and SNRm , respectively. Then, to evaluate the difference
between the fused image Ẑ and the ground truth Z, four quality
assessment metrics are introduced as below.

1) Root Mean Squared Error: The RMSE has been widely
used in image processing. This quality measurement can be
computed with the following equation:

RMSE(Z, Ẑ) = ‖Z − Ẑ‖F√
M N L

. (23)

2) Spectral Angle Mapper: The SAM measures the spectral
distortion between the reference image and the fused image.
If the fused image is ideal, the value of SAM is zero.
Otherwise, it is obtained by averaging all spectral distortion
angle of all pixels in the image, as shown in the following
equation:

SAM(Z, Ẑ) = 1

M N

∑
j

arccos

(
ẐT
. j Z. j

‖Z. j ‖2‖Ẑ. j ‖2

)
. (24)

3) Erreur Relative Globale Adimensionnelle De SynthèSe:
The ERGAS is proposed to overcome the sensitivity to the
changes from numerical counts to radiances. This metric is
more robust in terms of calibration and changes of units. It is
defined as [52]

ERGAS(Z, Ẑ) = 100

s

√√√√ 1

L

L∑
i=1

(
RMSE(i)

μi

)2

. (25)

In the above definition, RMSE(i) and μi denote the RMSE
and the mean pixel value in the i th band of HSI, respectively.
s is the spatial scale between the HSI and the MSI.

4) Mean of Structural Similarity Index: The structural sim-
ilarity (SSIM) index measures the difference of two images
patches, x and x̂, with (26) [53]

SSIM(x, x̂) = (2μxμx̂ + c1)(2σx̂x + c2)(
μ2

x + μ2
x̂ + c1

)(
σ 2

x + σ 2
x̂ + c2

) (26)

4More information about AVIRIS can be found at http://aviris.jpl.nasa.gov/.
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Fig. 3. RMSE values for different values of d and r . X̃ is obtained by bicubic interpolation. (a)–(c) SNRh = SNRm = ∞. (d)–(f) SNRh = 20 dB,
SNRm = 30 dB. The white line represents d = r . (a) and (d) Balloons data sets results. (b) and (e) PaviaU data sets results. (c) and (f) Moffett data sets
results.

where μx and μx̂ are the respective mean pixel values of the
patch x and x̂, respectively, σx and σ̂x are their corresponding
variance, and σx̂x is the covariance between two patches. c1
and c2 are introduced parameters that satisfies ci = √

kiη,
i = 1, 2. η denotes dynamic range of the images. In this paper,
k1 = 0.01, k2 = 0.03. As all the metrics are measured in the
range of 16-b images, η = 216 − 1. To evaluate two images,
a sliding window of 32 × 32 pixels is used to segment pairs
of patches at the same position in two images, which moves
pixel by pixel horizontally and vertically. Then, the mean of
SSIM index is obtained by averaging the SSIMs of all patches’
pairs.

B. Implementation Details

The proposed algorithm is run on MATLAB R2013a with
an Intel Core i7 CPU at 3.6 GHz and 16 GB RAM. Three
problems arise in implementation. First, there are a lot of
intermediate variables that are involved in the iteration loop.
It is intractable to initiate them. Second, two model parameters
are required for the proposed methods, including the spectral
subspace H and the size of U. But the tuning of their values
remains open to question. Third, X̃ is an upsampled image.
The choice of its upsampling approach for different blur
kernels still requires further exploration. This section mainly
discusses the solutions to these three problems.

1) Initialization: We propose a Gibbs-sampling-based
method to initiate the intermediate variables. In the ini-
tialization, samples of each variable are generated one by
one from its corresponding conditional distribution, which

can be obtained based on (9). After 10 sampling rounds,
the conditional distribution of each variable is taken as the
initial approximate posterior for the proposed approach. This
initialization method is equivalent to running a few rounds of
Gibbs-sampling. Obviously, according to the Gibbs-sampling
method [54], generated samples can be regarded to be drawn
from the joint distribution when sampling rounds tend to
infinity. Although the sampling rounds in our initialization are
limited, the samples are more likely to be near the peak of the
joint probability density function, enough for the initialization
to accelerate the convergence.

2) Selection of Model Parameters: On the basis of the
initialization, selections of the input parameters are analyzed.
As has been reported, truncated SVD on the low-resolution
HSI corresponds to the maximum likelihood estimation of
spectral subspace if the image noise is i.i.d. or zero [28]. Other-
wise, the calculation of spectral subspace will be complex [55].
In Section II-C, we have assumed that the perturbations
are band-independent isotropic Gaussian noises. As a result,
we utilize truncated SVD on low spatial resolution HSI, X,
to obtain the spectral subspace H.

Then, to select the size of U, two groups of experiments on
the fusion of HSI and MSI are designed with various values
of d and r . In the first group of experiments, all input images
are generated under two different SNR conditions based on the
scenarios in Section IV-A, and the spectral response matrix is
assumed to be accurately known. The corresponding results
are shown in Figs. 3 and 4.

Fig. 3 shows the relationship between the fusion quality
and the size of U. From Fig. 3(a)–(c), we can find that the
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Fig. 4. RMSE values for different iteration numbers. SNRh = SNRm = ∞. X̃ is obtained by bicubic interpolation. (a)–(c) Results of the Balloons data set,
the PaviaU data set, and the Moffett data set, respectively.

Fig. 5. RMSE values for different values of SNRh . SNRm = 40 dB. r = 30. X̃ is obtained by bicubic interpolation. (a)–(c) Results of the Balloons data
set, the PaviaU data set, and the Moffett data set, respectively.

values of RMSE decrease significantly with the increase in
r and d , even when r > d; the fusion qualities tend to be stable
when d ≥ 6 and r ≥ 7. These results validate the analysis on
U in Section II-B. However, the above trend changes when
the input images are obtained at low SNRs (SNRh = 20 dB,
SNRm = 30 dB). In Fig. 3(d), the values of RMSE tend to be
better when d > 6, r > 12, and r > d . These results imply
that the proposed approach would have a good fusion quality
if U is a thin matrix (r > d). However, in Fig. 3(e) and (f), the
values of RMSE tend to be worse with the increase in d and r
when d > 11 and r > 10. This phenomenon is mainly caused
by the overfitting of our model, which indicates that the values
of d and r cannot be too large at the same time if the images
are measured at low SNRs. Considering the data trends in
Fig. 3, it would be better to let 6 ≤ d < 11 and r > 12.

Fig. 4 shows the convergence curves with different sizes
of U. Obviously, in Fig. 4(a), our approach does not converge
within 40 iterations for some combinations of r and d . But the
curves in the figure tend to be better with the increase in r ,
especially when r = 30. As for Fig. 4(b) and (c), it is easy
to find that the convergence speeds of the proposed approach
tend to increase with the value in r , while d has a significant
impact on the lower bound of convergence RMSE value.
Furthermore, we can find that the fusion performance and the
convergence speeds tend to be better when r > d . Therefore,
to guarantee the convergence and improve the corresponding
speed, it would be better to let r ≥ 30 and set U as a thin

matrix (r > d). Besides, in Fig. 4, the initial RMSE values of
three data sets are close to their corresponding convergence
values, which implies that the proposed initialization method
is effective for these three data sets.

In the second group of experiments, HS images are
generated under different SNRh values based on the scenarios
in Section IV-A. We still assume that the spectral response
matrix is accurately known for the proposed methods. Inspired
by Fig. 4, we let r =30, and set the iteration of our approach
to 30. The results are shown in Fig. 5, in which RMSE
curves are smoothed with a 7-span moving average filter. It
is easy to find that Fig. 5(a)–(c) has two different trends.
In Fig. 5(a), the values of RMSE tend to be better with the
increase in d and tend to be relatively stable when d ≥ 8; in
Fig. 5(b) and (c), the values of RMSE show a reverse trend
when d ≥ 7 and SNRh <24 dB. These trends are similar to
those in Fig. 3(d)–(f), and indicate that d should be set within
the range of 7 to 20 and should be close to 7, when r = 30,
and the images are obtained at low SNRh .

Considering the balance among the fusion quality, the
convergence speed, and the noise-resistance, it would be better
to let 7 ≤ d < 11, r ≥ 30. In the following experiments, the
size of U is set to 30 × 10 for all data sets, i.e., d = 10 and
r = 30. As the proposed approach has already shown good
performance with about 20 iterations, a stopping criterion is
proposed that our approach is run for 20 iterations in every
case.
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Fig. 6. RMSE values of the proposed method for different values of SNRh , blur kernels, and the upsampling approaches. SNRm = 40 dB. d = 10, r = 30.
Three markers represent nearest neighbor, bilinear, and bicubic interpolation for X̃, respectively. Standard deviations of the Gaussian blur kernels in three
above subfigures are 3.40, 2.12, and 2.12, respectively. (a)–(c) Results of the Balloons data set, the PaviaU data set, and the Moffett data set, respectively.

3) Selection of the Upsampling Method for X̃: To explore
the influence of upsampling methods on fusion performance,
another group of experiments is designed. In these experi-
ments, the spectral response matrix is assumed to be accurately
known. Two kinds of blur kernels are adopted to generate the
low resolution HSI, including the average blur kernel and the
Gaussian blur kernel introduced in Section IV-A. These two
kinds of blur kernels have been widely used in many similar
works [2], [3], [22], [23]. Their curves of fusion quality are
shown with different upsampling approaches for X̃ in Fig. 6.
From the results, we can find that there only exists a little
difference between the RMSE values of average and Gaussian
blur kernels. Moreover, the proposed method performs better
in most cases with bilinear and bicubic interpolation for X̃.
Obviously, bicubic interpolation is not the best upsampling
approach in Fig. 6. But it shows relatively stable performance
for different blur kernels and data sets. Thus, we tend to choose
bicubic interpolation to obtain X̃.

C. Comparison With Other Fusion Methods

In this section, on the basis of the scenarios in Section IV-A,
we compare our approaches with four state-of-the-art
approaches, including the coupled nonnegative MF (CNMF)
method [2], [30], the HySure method [28], the Bayesian
Naive (BN) method [56], and the Bayesian Sparse (BS)
method [56].

The CNMF method is first proposed in [2], which requires
the relative spectral matrix and the PSF to regulate the
factor matrices during the iteration process. The corresponding
estimation approach for these two sensor characteristics is
proposed in [30], based on which the CNMF method shows a
relatively good performance for data fusion of EO-1/Hyperion
and Terra/ASTER.

The HySure method models the fusion problem under
the optimization framework. Subspace-based total variation
(TV) regularization is introduced to impose constraints on
the spectra and texture of the fused image. In this method,
the spatial blur and the spectral response have also to be
estimated [28], and the spatial blur is assumed to be spatially
invariant, such that FFT can be used to reduce the optimization
complexity. The BN method and the BS method are proposed
by Wei et al. [6], [18]. These two methods have high order of

Fig. 7. (a)–(c) Ground truths of the Balloons, PaviaU, and Moffett data sets.
They are all in false color.

Fig. 8. Spatial blurs estimated by the approach in [28]. SNRm = 40 dB,
SNRh = 30 dB. The estimation errors (Eb) of these three blurs are 20.31%,
10.03%, and 14.32%, respectively. (a)–(c) Balloons, PaviaU, and Moffett data
sets, respectively.

TABLE II

HS+RGB IMAGE FUSION RESULTS FOR THE BALLOONS DATA SET

(SNRm = 40 dB, SNRh = 30 dB, E f = 29.85%, Eb = 20.31%)

complexity, especially the former one, in which Gibbs sampler
is used for MMSE estimator. But later the author finds a
solution to largely cut down the computational complexity for
the spatially invariant imaging system [56]. Since the spatial
blur and the spectral response are also required in these two
methods, the author then analyzes the performance of these
two methods with estimated sensor characteristics in [29].
In this paper, according to [29], we also use the approach
in [28] to estimate the spatial blur and the spectral response
for the BN and BS methods.
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TABLE III

HS+MS IMAGE FUSION RESULTS FOR THE PAVIAU DATA SET

Fig. 9. Results for the Balloons data set (SNRm = 40 dB, SNRh = 30 dB).
(a) RMSE images. (b) SAM images.

For a fair comparison, model parameters in the above com-
parison methods are tuned carefully according to their relevant
papers [2], [28], [56]. Specifically, we set Iin = 200, Iout = 3
for the CNMF method with the help of Dr. Yokoya, one of the
author of [2]. According to [28], we set λφ = 5×10−4, λm = 1
and obtain H by VCA [41] for the HySure method. As for
the BN and BS methods [56], we set �L = Il ,�R = IL

and obtain H by truncated. Since the ranks of our fusion
results (Z) are min (d, r) = 10 (d = 10, r = 30), we set

Fig. 10. Results for the PaviaU data set (SNRm = 30 dB, SNRh = 20 dB).
(a) RMSE images. (b) SAM images.

the endmemebers of all above comparison methods to 10,
so that the results of these four methods have the same ranks of
matrices as that of our approach. Besides, to ensure the good
recovery of sensor characteristics, we first define the following
error assessment metrics:

E f = ‖F̂ − F‖/‖F‖ × 100% (27)

Eb = ‖b̂ − b‖/‖b‖ × 100% (28)
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TABLE IV

HS+MS IMAGE FUSION RESULTS FOR THE MOFFETT DATA SET

Fig. 11. Results for the Moffett data set (SNRm = 20 dB, SNRh = 20 dB).
(a) RMSE images. (b) SAM images.

in which F̂ and F denote the estimated and accurate spec-
tral response matrices, respectively, while b̂ and b denote
the estimated and accurate spatial blurs, respectively. Then,
we chose the values of λb and λR in the estimation approach
in [28] based on these metrics. We finally set λb = 10,
λR = 50 for the Balloons data set, λb = 100, λR = 130
for the PaviaU data set, and λb = 10, λR = 10 for the

Moffett data set. On the basis of the above parameter settings,
we show the comparison fusion results of three data sets in
Tables II–IV and Figs. 7–11, in which the bold fonts are used
to show off the best two values of each quality assessment
metric.

From the results of three data sets, we can find that the
proposed approach with the accurate spectral response (F)
surpasses others in most cases, while the proposed approach
with the estimated spectral response (F̂) outperforms others
when the spatial blurs are not well recovered (i.e., the values
of Eb are relatively large, e.g., the estimated blurs of the
Balloons and the Moffett data sets) or the images are measured
at low SNRs (e.g., the PaviaU data set at SNRm = 20 dB
and SNRh = 20 dB). Thanks to the proposed model without
intervention of the PSF, our approach is not influenced by the
estimation errors of the PSF, showing more robustness to the
noise compared with other fusion approaches.

We also report different fusion qualities for the compar-
ison approaches under various SNRs. The CNMF method
has poor fusion qualities in most cases despite that it costs
relatively low-computational resource and is stable even at
low SNR. The HySure method is the most robust one to the
noise in the four comparison approaches. This method shows
high SSIM values and low ERGAS values even when the
SNRs turn worse. Thanks to the TV regularization, the fused
images have clear texture in the PaviaU and Moffett data sets.
As the parameters of the HySure method are carefully tuned
according to the PaviaU data set at high SNRs in [28], the
HySure method outperforms the proposed approach with F̂
at SNRm = 40 dB and SNRh = 30 dB. Unfortunately, this
method tends to be worse than the proposed when the data sets
or the SNRs are changed, and it is influenced by the estimation
errors of the PSF (i.e., the spatial blur). Furthermore, this
method has a high computational cost, especially when the
input MSI is large, e.g., the Balloons data set. As for the
BN and BS methods, previous studies have proved that they
show excellent performance under the condition of known
sensor characteristics [32], [56]. However, in our experiment,
sensor parameters are estimated instead. Although HySure,
BN, and BS share the same estimated parameters, the latter
two methods have poor performance at low SNR, since they
are both sensitive to the estimation errors and require the
manual tuning of covariance matrices, �L and �R , once the
SNRs are changed. Moreover, we find that these two methods
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are unstable for the third data set when SNRm = 20 dB and
SNRh = 20 dB.

V. CONCLUSION

In this paper, we have proposed a novel fusion model for
imaging system with an unknown arbitrary PSF, which decom-
poses the fused image into double MF-based components and
the residuals without intervention of PSF. We cast the fusion
problem as an MMSE estimator under Bayesian framework.
Then, a variational inference approach is utilized to obtain the
posterior efficiently. The experimental results verify that our
fusion approach outperforms other state-of-the-art methods,
and model parameters are less dependent on the input data
sets. Furthermore, as the PSF is not required in our model,
estimation errors of PSF have no influence on the fusion
performance. Thus, our approach shows more robustness to
the noise and can be adopted for spatially variant imaging
systems with no sacrifice in computational complexity.
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