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Compressibility Constrained Sparse Representation
With Learnt Dictionary for Low Bit-Rate

Image Compression
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Abstract— This paper proposes a compressibility constrained
sparse representation (CCSR) approach to low bit-rate image
compression using a learnt over-complete dictionary of tex-
ture patches. Conventional sparse representation approaches for
image compression are based on matching pursuit (MP) algo-
rithms. Actually, the weakness of these approaches is that they
are not stable in terms of sparsity of the estimated coefficients,
thereby resulting in the inferior performance in low bit-rate
image compression. In comparison with MP, convex relaxation
approaches are more stable for sparse representation. However,
it is intractable to directly apply convex relaxation approaches
to image compression, as their coefficients are not always
compressible. To utilize convex relaxation in image compression,
we first propose in this paper a CCSR formulation, imposing
the compressibility constraint on the coefficients of sparse rep-
resentation for each image patch. In addition, we work out the
CCSR formulation to obtain sparse and compressible coefficients,
through recursively solving the �1-norm optimization problem
of sparse representation. Given these coefficients, each image
patch can be represented by the linear combination of texture
elements encoded in an over-complete dictionary, learnt from
other training images. Finally, low bit-rate image compression
can be achieved, owing to the sparsity and compressibility of
coefficients by our CCSR approach. The experimental results
demonstrate the effectiveness and superiority of the CCSR
approach on compressing the natural and remote sensing images
at low bit-rates.

Index Terms— Image compression, over-complete dictionary,
sparse representation.

NOMENCLATURE

N Number of pixels of input image,
i.e., image size.

X Input image arranged as a row vector, using
raster-scan order, X ∈ R

N .
K Number of patches extracted from

the input image.
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n Number of pixels (n = q × q pixels)
in each image patch, i.e., patch size.

{xk}K
k=1 Fixed-size image patches arranged as row

vectors, extracted from the input image,
xk ∈ R

n .
l Number of elements in an over-complete

dictionary.
D Learnt over-complete dictionary for

sparse representation, D ∈ R
n×l .

m = {mk}K
k=1 Mean intensity values of image

patches {xk}K
k=1.

y = {yk}K
k=1 Texture of {xk}K

k=1, obtained by removing
mean intensity values {mk}K

k=1
from {xk}K

k=1.
ŵ = {ŵk}K

k=1 Coefficients of sparse representation for
each image patch, ŵk ∈ R

l .
ŵS S nonzero/largest coefficients of ŵ.
X̂ = {x̂k}K

k=1 Reconstructed image.

I. INTRODUCTION

IMAGE compression aims to reduce the data size of images
and to store or transmit these images efficiently. Therefore,

it offers the promise of image/video transmission under limited
bandwidth. The past few decades have witnessed an extensive
body of literature on both lossless [2] and lossy image com-
pression [3]. In lossy image compression, the central idea is
to transform image pixels to obtain compressible coefficients
and then only store or transmit the important coefficients, e.g.,
discrete cosine transform used in Joint Photographic Experts
Group (JPEG) [4] and discrete wavelet transform (DWT)
used in JPEG 2 000 [5]. After obtaining sparse coefficients
by quantization, the compression can be achieved via an
optimization of encoding nonzero values of the quantized
coefficients.

In the early 1990s, research interests of image representation
moved from the transform to an over-complete dictionary
consisting of a group of mathematical functions called bases or
elements. Over-complete means that the number of dictionary
elements exceeds the element dimension. At the beginning,
matching pursuit (MP) was proposed [6] to decompose a signal
by selecting a small subset of functions from a predefined
over-complete dictionary. Afterward, Chen and Donoho [7]
proposed a basis pursuit approach to decompose a signal
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with respect to an over-complete dictionary. As presented
in [7], the advantage of basis pursuit is that it may avoid the
suboptimality of MP in terms of sparsity. However, the benefit
of MP, over basis pursuit, is the high compressibility of its
sparse coefficients, which makes it applicable in image/video
compression. On the basis of MP, an over-complete dictionary
of separable Gabor functions was applied [8] in decomposing
motion residual signals for low bit-rate video coding. For
image coding, a posteriori quantization scheme [9] was pro-
posed for MP coefficients, which decay exponentially when
sorted in decreasing order of magnitude. Recently, for low bit-
rate image compression, Figueras i Ventura et al. [10] devel-
oped an over-complete dictionary of 2-D features, built by
anisotropic refinement and rotation of contour-like functions.
Such a dictionary has shown the effectiveness in compressing
the natural images with MP decomposition.

The above image compression approaches represent the nat-
ural image, in light of the predefined over-complete dictionary
composed of mathematical functions. However, the mathemat-
ical functions usually have limited expressiveness [11], when
considering the complexity of image patches.1 The distinct
texture of most image patches is comprised of one or more
basic texture patterns, to reflect image content. Olshausen and
Field [12] have shown the potential of using machine learning
approaches to generalize the over-complete dictionary from
a set of training image patches. The elements (also called
atoms) of such a learnt over-complete dictionary can be seen
as the basic texture patterns of generic natural images, and
the sparse representation with such a learnt dictionary has
been proved to be very similar to simple-cell receptive field
in mammalian primary visual cortex. Sparse representation,
also called sparse coding, refers to analyzing and explaining
a signal structure/pattern, through the representation of the
signal by a linear combination of one or more elementary
signal patterns from a dictionary.

Benefitting from the success of [12], sparse representa-
tion with the learnt dictionary has been successfully imple-
mented in computer vision [13] and image processing [14].
In particular, several relevant approaches have been proposed
in [1] and [15]– [17] for low bit-rate image compression.
Most of these methods are based on MP algorithms, and
thus suffer from the instability in obtaining the sparse coef-
ficients. Here, the instability means the perturbations of the
coefficient sparsity for image compression. Convex relaxation
(from �0-norm to �1-norm) approaches [18] are able to yield
more stable solutions to sparse representation. Hence, convex
relaxation approaches, together with some dictionary learning
algorithms, have been utilized in many tasks of computer
vision and image processing. However, using the numerical
analysis2 of decay rate, we argue in this paper (Section III-B)
that applying convex relaxation approaches in low bit-rate
image compression is more challenging, since the coefficients
produced by these approaches are not easily compressible.
Therefore, we propose a compressibility constraint sparse

1Normally, an image can be divided into several nonoverlapping or over-
lapping patches with fixed size.

2Since image content is diverse, it is infeasible to conduct an analytical
analysis on the decay rate of sparse coefficients of image patches.

representation (CCSR) approach with a learnt over-complete
dictionary for image compression, to benefit from the stability
of the existing convex relaxation approaches, while assuring
coefficient compressibility. Then, we show that our CCSR
approach is capable of compressing the generic natural images
at low bit-rates.

More specifically, we first propose a novel CCSR formu-
lation to make the coefficients of sparse representation not
only sparse but also compressible. In the CCSR formulation,
we embed the compressibility constraint on sparse coefficients
for low bit-rate image compression and consider the com-
patibility between neighboring patches to relieve the block
effect of compressed images, which refers to visible artifacts
at patch boundaries caused by uncorrelation of neighboring
patches. Once sparse and compressible coefficients are
achieved through solving the CCSR formulation, an image
patch can be represented by a linear combination of elements,
selected from the learnt over-complete dictionary.

Then, a recursive �1-norm minimization procedure is pre-
sented for solving the proposed CCSR formulation to obtain
sparse and compressible coefficients, of which near-zero
values may be discarded. Afterward, a rational quantization
and entropy coding scheme applied to such coefficients results
in good rate-distortion performance at low bit-rates.

Finally, we present a gradient descent algorithm to learn the
over-complete dictionary of texture patterns from the training
images, with two iterative steps. The first step yields the
sparse and compressible coefficients for all training image
patches, with the over-complete dictionary being fixed. The
second step optimizes the over-complete dictionary using the
gradient descent algorithm, to fit the training patches and their
corresponding coefficients obtained at the first step. Then,
these two steps are run iteratively until convergence. Note
that since the compressibility constraint has been considered
at the first step, the compressibility is imposed when learning
the dictionary. The dictionary built by our approach is able
to capture the basic texture patterns of image content, thus
showing the promise for image compression at low bit-rates.

The rest of this paper is organized as follows. In Section II,
we briefly review the related work of sparse representa-
tion with learnt over-complete dictionary. In Section III,
we propose the CCSR approach for image compression.
Section IV presents the dictionary learning method for our
CCSR approach. Section V shows experimental results and
Section VI concludes this paper.

II. RELATED WORK ON SPARSE REPRESENTATION WITH

LEARNT OVER-COMPLETE DICTIONARY

Sparse representation aims at representing a signal by a
linear combination of one or more elementary signal patterns
from a dictionary. Often, sparse representation allows the
dictionary to be over-complete. The earlier work of sparse
representation [6], [7] mainly concentrated on seeking the opti-
mal sparse representation of a signal, using a predefined over-
complete dictionary. The idea of learning an over-complete
dictionary, which yields the sparse representation for a set of
training signals, has been extensively studied [14], [19]–[21].
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For example, Kreutz-Delgado et al. [19] proposed a Bayesian
model, in cooperation with concave/Schur-concave negative
log priors, to learn the over-complete dictionary that is appro-
priate for obtaining the sparse representation of environmental
signals. In their approach, environment refers to statistical
generating mechanism for signals.

Sparse representation with learnt over-complete dictionary
has been successfully applied in the fields of image process-
ing and computer vision [13]. In computer vision area,
Wright et al. [22] developed a new algorithm to utilize the
theory of sparse representation, for automatic recognition of
faces from frontal views with varying expression and illumina-
tion. Based on the sparse representation of facial images, they
argued that the number of extracted features is much more
important than the choice of features for recognition. In image
denoising, Aharon et al. [14] proposed a novel K-SVD algo-
rithm to effectively learn an over-complete dictionary from
natural image patches, to remove the image noise with sparse
representation. In super resolution, Yang et al. [21], [23]
proposed an approach to enforce the similarity of sparse
representations between the corresponding low-resolution and
high-resolution pairs of image patches, by jointly learning two
dictionaries that contain low-resolution and high-resolution
elements, respectively. Then, the high-resolution image patch
can be produced, by applying the sparse representation of
the corresponding low-resolution image patch regarding the
learnt dictionary with high-resolution elements. In image com-
pression, Bryta and Elad [15] proposed a K-SVD approach,
incorporating orthogonal MP algorithm, toward facial image
compression at low bit-rates. Afterward, Zepeda et al. [16]
proposed to use a novel iteration tuned and aligned dic-
tionary for sparse representation in facial image compres-
sion. Most recently, using order recursive MP, Skretting and
Engan [17] developed a recursive least squares dictionary
learning algorithm (RLS-DLA) to compress generic natural
images. Although RLS-DLA performs better than other state-
of-the-art dictionary learning approaches (such as K-SVD) on
generic image compression, it cannot outperform the conven-
tional DWT-based JPEG 2 000 approach.

In this paper, to improve the performance of sparse rep-
resentation with learnt dictionary in image compression, we
present a novel CCSR approach with a recursive �1-norm
optimization solution, instead of the conventional MP-related
algorithms, for stably obtaining sparse and compressible coef-
ficients. Indeed, the coefficient compressibility of our CCSR
approach enables the discarding of small-valued coefficients,
thus making low bit-rate image compression possible.

III. SPARSE REPRESENTATION WITH OVER-COMPLETE

DICTIONARY FOR IMAGE COMPRESSION

For image compression, the framework of the proposed
CCSR approach is summarized in Fig. 1. The notations used
are described in nomenclature section.

As shown in Fig. 1, to compress images using the proposed
approach, an off-line step has to be conducted first. At this
off-line step, an over-complete dictionary D of texture patches
needs to be learnt from the training data, using the method

Fig. 1. Framework of the proposed CCSR approach with learnt dictionary
for low bit-rate image compression.

introduced in Section IV. Then, the framework of the proposed
CCSR approach has the following on-line steps, for compress-
ing target image X ∈ R

N and obtaining reconstructed image
X̂ ∈ R

N .

1) Compression: This involves calculating mean intensity
values m and seeking sparse and compressible coeffi-
cients ŵ of sparse representation with respect to over-
complete dictionary D, for all image patches {xk}K

k=1
with fixed size (n = q × q pixels). More details of this
step are to be presented in Section III-B.

2) Quantization and Entropy Coding: This involves con-
ducting quantization and entropy coding of mean inten-
sity values m and of the nonzero/largest coefficients ŵS

of ŵ. Then, only the encoded bits after entropy coding
need to be saved or transmitted to the decoder. For more
details, see Section III-C.

3) Decompression: This involves reconstructing image X̂
via summing mean intensity values m and the texture
patches. Here, the texture patches are built by aggre-
gating the elements of over-complete dictionary D with
their corresponding coefficients in ŵ. More details are
to be discussed in Section III-D.

Next, the basic idea of sparse representation with over-
complete dictionary is introduced, as the foundation of the
proposed CCSR approach.

A. Basic Idea of Sparse Representation With
Over-Complete Dictionary

Some key problems of signal processing or machine learn-
ing can be stated as a linear regression problem, in which
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unknown coefficients w ∈ R
l are related to observation

x ∈ R
n via

x = �w + υ (1)

where observation matrix � ∈ R
n×l is a random measurement

matrix in compressive sensing (CS) or an over-complete dic-
tionary in sparse representation, and vector υ normally refers
to the noise, caused by the perturbations of the coefficients or
the over-complete dictionary.

In most cases, (1) is underdetermined due to the fact
that there are more unknown coefficients than the number
of equations, i.e., n < l. Thus, determining coefficients w
using (1) is an ill-posed problem. As proposed in CS [24],
in combination with the prior knowledge that w is sparse, the
sparsest solution of w to (1) is unique, once observation matrix
� satisfies the restricted isometry property (RIP). The RIP
uses linear algebra to characterize matrices which are closely
orthonormal, at least when operating on sparse vectors. There-
fore, if the over-complete dictionary for sparse representation
satisfies an appropriate RIP or mild RIP condition, then x
can be represented by sparse coefficients w using (1). From
the theoretical point of view, it has been shown in [25] that
the over-complete dictionaries also meet the mild condition of
RIP. From the empirical point of view, Yang et al. [21] has
demonstrated that sparse representation with respect to learnt
over-complete dictionary of texture, as shown in (1), is capable
of representing images for super resolution task. Hence, image
compression can be modeled as a linear regression problem
to find the sparse coefficients with respect to the learnt over-
complete dictionary.

B. Compression: CCSR With Over-Complete Dictionary

In this section, we introduce the compression step for
the proposed CCSR approach, in which an image can be
decomposed into sparse and compressible coefficients. First
of all, patches {xk}K

k=1 are extracted from input image X in
raster-scan order (from left to right and top to bottom). Such
an extraction introduces the block effect. To make each image
patch compatible with its neighboring patches, we consider
the overlap between neighboring patches in both vertical
and horizontal directions. Once the number of overlapping
pixels increases, the block effect can be reduced along patch
boundaries, but at the expense of rate-distortion degradation
(because of more patches to be encoded at a given bit-rate).
Note that the overlapping size may depend on the patch size,
i.e., more overlapping pixels are required for large patches.

Next, to reduce the required size of over-complete dictio-
nary, texture patches {yk}K

k=1 of image patches need to be
obtained by removing mean intensity values {mk}K

k=1. Then,
upon (1), texture patch yk can be represented by the following
linear regression:

yk = Dwk + υ (2)

where wk ∈ R
l represents the coefficients of sparse represen-

tation for the kth image patch and D ∈ R
n×l (l > n) is the

learnt over-complete dictionary, with each column indicating a
texture pattern. For the method of learning D, see Section IV.

In addition, the �2-norm of υ bounds the perturbations of
coefficients or dictionary. Then, by computing w = {wk}K

k=1
and m = {mk}K

k=1, each image patch can be represented via
the linear combination of texture elements, selected from over-
complete dictionary D.

As discussed in the above Section III-A, given image
patch xk and its mean intensity value mk , determining coeffi-
cients wk in (2) is an ill-posed problem. However, according
to [25], (2) is equal to the following formulation of �0-norm
minimization:

min
wk

||wk ||0 s.t. ‖ Dwk − yk ‖2
2 ≤ ε (3)

where ε = ||υ||22 stands for the compression quality and
minwk ||wk ||0 represents the minimum number of nonzero
coefficients. Equation (3) formulates image compression using
D and yk . This equation indicates that the motivation of
image compression is finding the lowest bit-rate via sparsest
coefficients, i.e., minwk ||wk||0, given the compression quality3

‖ Dwk − yk ‖2
2 ≤ ε.

Nevertheless, the computational complexity of (3) with the
sparsity constraint ||wk||0 is generally overwhelming, as it is
an NP-hard problem. To approximately solve this NP-hard
problem, several approaches concentrate on seeking for the
sparsest solution to (3). One set of approaches are the
MP-related approaches, including [6] and [8], and so on, which
are simple yet effective. However, as analyzed in [7], MP
is not reliable in obtaining the global optimal solution to
(3), in terms of sparsity. The other group of approaches are
convex relaxation from �0-norm to �1-norm, e.g., Lasso [18].
These methods provide stability with small perturbations of
the coefficient sparsity, at the expense of the computational
complexity. In this paper, we mainly focus on the convex
relaxation due to its stability. Therefore, according to [7] we
can solve (3) by �1-norm minimization

min
wk

||wk ||1 s.t. ‖ Dwk − yk ‖2
2 ≤ ε. (4)

Considering the compatibility between neighboring patches,
we use the similar way of [21] in enforcing that the currently
estimated (kth) patch is nearly consistent with the previous
overlapping image patches, to alleviate the block effect along
patch boundaries in the reconstructed image. Such compati-
bility can be modeled by

||E(Dwk + mk) − vk ||22 ≤ ε (5)

where matrix E extracts the upper and left pixels of each image
patch, as the overlapping region between the current image
patch and its previously processed neighboring patches, vk is
the vector of intensity values of overlapping region, output by
the previously estimated patches, mk = (mk, . . . , mk) is the
vector of mean intensity values for the kth image patch, with
the same dimension as vk , and ε stands for the compatibil-
ity level, controlling the possible blocking artifacts between

3It is intractable to directly set an exact value of ε. However, we can increase
or decrease ε by modifying the value of parameter μ, to be discussed in (7)
afterward.
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neighboring patches. Consequently, to adopt the compatibility
of neighboring patches, (4) is modified to

min
wk

||wk ||1 s.t. ‖ Dwk − yk ‖2
2 ≤ ε

||E(Dwk + mk) − vk ||22 ≤ ε. (6)

Following the result of [18], the �1-norm optimization of (6)
can be relaxed to:

min
wk

‖ g(wk) ‖2
2 +μ||wk ||1 (7)

where g(wk) =
(

Dwk√
λE(Dwk + mk)

)
−

(
yk√
λvk

)
.

Equation (7) indicates the compromise among the error
of approximation to yk , the compatibility of neighboring
patches, and the sparsity of coefficients. Here, λ (≥0) stands
for the tradeoff between the compatibility of neighboring
patches and the reconstruction error, and μ (≥0) balances
the coefficient sparsity and the reconstruction error. Note that
ε and ε vanish at the step from (6) to (7), as they are
tuned to parameters μ and λ. Here, we define σ(yk) as the
standard deviation of intensities of pixels within texture patch
yk and thus σ−2(yk) reflects the texture smoothness of yk .
To improve the sparsity of coefficients when representing
those smooth patches, μ is proportional to the texture
smoothness, thereby chosen to be c2σ−2(yk), where c is the
constant to adjust reconstruction error level. The setting of
μ in (7) implies that at a given error level c, more penalty
of sparsity is imposed on the patches that have more smooth
texture. This is due to the fact that the patches with smooth
texture are likely to have less reconstruction error, even
without nonzero-valued coefficient.

Ideally, the estimation of wk in (7) needs to be conducted
simultaneously for all patches, to avoid the consequence of
a bad choice of wk−1 on wk . Unfortunately, such a kind
of optimization cannot be realized due to the complexity
constraint. Therefore, wk of each patch is estimated in raster-
scan order.

Next, p-compressibility is introduced in our approach such
that some near-zero coefficients of sparse representation can
be discarded for image compression at low bit-rates.
p-compressible coefficients mean that when the coefficients
are sorted in the order of decreasing magnitude, they decay
according to the following power law:

∣∣wk
τ (i)

∣∣ ≤ R · i−1/p (8)

where τ (i) indexes the sorted i th decreasing coefficient of
the sparse representation, R is a scaling factor, and p is
defined as the decay rate of |wk

τ (i)|. It has been shown in [9]
that the compressibility of sparse coefficients output by the
MP algorithm is extremely high, as they decay exponentially.
Unfortunately, in (7) it is intractable to produce the acceptably
compressible coefficients, as shown in Fig. 2. This figure
shows that the decay rate of nonzero coefficients produced
by (7) is much slower than that of wavelet coefficients, for
natural images. Thus, we propose the following formulation
to improve the compressibility of sparse coefficients.

Fig. 2. Average normalized magnitude of sparse coefficients of 10 images
randomly selected from the Berkeley image segmentation dataset. Note that
the nonzero coefficients of sparse representation were obtained by (7) with
convex relaxation. Bounds of various compressibility values are demonstrated
as the baselines. It is important to recognize that the wavelet coefficients of
natural images are 1.67-compressible as analyzed in [26].

To enforce the nonzero coefficients to be p-compressible,
we define a utility function

f
(
wk

τ (i)

) =
{∣∣wk

τ (i)

∣∣ − R · i−1/p, if
∣∣wk

τ (i)

∣∣ > R · i−1/p

0, if
∣∣wk

τ (i)

∣∣ ≤ R · i−1/p.

(9)

Here, R can be set to ||wk ||∞. In addition, we may have
p = 1.67, the same as that of wavelet coefficients of natural
images, as discussed in [26]. Then, we can jointly optimize
the sparsity and compressibility of coefficients by rewriting
(7) as

min
wk

‖ g(wk) ‖2
2 +

∣∣∣∣
∣∣∣∣
(

μwk

γ f (wk
τ )

)∣∣∣∣
∣∣∣∣
1

(10)

where parameter γ (≥0) is the importance of coefficient
compressibility to the solution and f (wk

τ ) is { f (wk
τ (i))}l

i=1,
which has been defined in (9). Note that (10) can be reduced
to (7) if f (wk

τ ) is not considered. Equation (10) combines the
compressibility and sparsity of coefficients together in a uni-
fied formulation, namely CCSR formulation, thus being able
to compress images at various bit-rates, especially at low bit-
rates. It is intuitive that for a given bit-rate, less compressibility
is required for the coefficients with more sparsity, since the
large sparsity, itself, can work out low bit-rate compression.
Thus, in this paper we simply set γ = μ−1 = c−2σ 2(yk).

In (10), ||γ f (wk
τ )||1 is added to improve the coefficient

compressibility, increasing the limit on the number of coeffi-
cients assigned to the complex patches. This may improve the
perception of images by encouraging bits allocated to smooth
areas with large coefficients, and meanwhile discourages bit
wasting on refining complex texture with small coefficients.
However, it penalizes the distortion performance, since (10)
has a tradeoff between distortion ||Dwk −yk||2 and coefficient
compressibility || f (wk

τ )||1.
Equation (7) can be solved with the coefficients defined

as w̃k , through a linear programming of �1-norm minimization,
e.g., by Lasso [18]. Given w̃k , the following lemma provides
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us with some insights regarding the optimal solution to (10),
with a recursive linear programming.

Lemma 1: The �1-norm of optimal solution ŵk to (10) can
be bounded as

||w̃k||1 ≤ ||ŵk ||1 ≤ γ + μ

μ
||w̃k ||1 + 1

μ
||g(w̃k)||22 (11)

for a given reconstruction error bound ||g(ŵk)||22 ≤
g(w̃k)||22 ≤ e.

Proof: Since ŵk is the minimal solution to (10), the
following result can be obtained:

||g(
ŵk)||22 + μ||ŵk||1 + γ|| f

(
ŵk

τ

)||1
≤ ||g(w̃k)||22 + μ||w̃k||1 + γ|| f

(
w̃k

τ

)||1. (12)

Given (9), we have || f (w̃k
τ )||1 ≤ ||w̃k ||1 and || f (ŵk

τ )||1 ≥ 0.
Then, we can obtain

||ŵk||1 ≤ γ + μ

μ
||w̃k ||1 + 1

μ

(||g(w̃k)||22 − ||g(ŵk)||22
)

≤ γ + μ

μ
||w̃k ||1 + 1

μ
||g(w̃k)||22. (13)

In addition, since w̃k is defined as the optimal solution
to (7), the following inequality holds:

||g(
ŵk)||22 + μ||ŵk ||1 ≥ ||g(

w̃k)||22 + μ||w̃k||1. (14)

If ||ŵk||1 < ||w̃k ||1, then there exists ||g(ŵk)||22 > ||g(w̃k)||22,
according to (14). However, it is inconsistent with error bound
||g(ŵk)||22 ≤ g(w̃k)||22 ≤ e of this lemma. Therefore, we can
obtain ||ŵk||1 ≥ ||w̃k ||1. �

Based on Lemma 1, optimal solution ŵk to (10), ranging
from ||w̃k ||1 to (γ + μ)/μ||w̃k ||1 + 1/μ||g(w̃k)||22, can be
achieved by recursively solving (7) with conventional linear
programming. The detailed procedure is as follows.

1) First, the linear programming Lasso is conducted to
obtain w̃k as the solution to (7).

2) Next, Lasso is run with several trials to solve (7) with a
gradually reduced μ̄ (i.e., reconstruction error bound e
decreases gradually) so that the �1-norm of the solution
||w̄k ||1 increases from ||w̃k||1 to (γ + μ)/μ||w̃k ||1 +
1/μ||g(w̃k)||22. It is due to the fact that when we reduce
μ̄ for less reconstruction error in (7), the value of ||w̄k ||1
rises. Then, all solutions w̄k of each trial need to be
stored. Note that for each trial, we replace μ in (7) by μ̄,
which is initialized to be μ and then is gradually reduced
with step 
(μ) = h · μ (h is a constant, tuned to 0.05
as appropriate).

3) Finally, among all stored values of w̄k , the one minimiz-
ing (10) needs to be output as approximately optimal
solution ŵk . This is due to the fact that the range of w̄k

is the same as that of ŵk , since it has been proved in
Lemma 1 that ||w̃k ||1 ≤ ||ŵk ||1 ≤ (γ + μ)/μ||w̃k ||1 +
1/μ||g(w̃k)||22.

Finally, given an approximately optimal solution ŵk to (10),
image compression can be achieved via discarding small
(including zero-valued and near-zero-valued) coefficients.4

4The threshold on discarding small-valued coefficients is determined by the
target bit-rate.

TABLE I

COMPRESSION ALGORITHM OF THE CCSR

APPROACH FOR IMAGE COMPRESSION

Then, only the indices and values of S largest coefficients5

ŵS in ŵk and mean intensity values m = {mk}K
k=1 need

to be encoded for each image patch, with the quantiza-
tion and entropy coding scheme discussed in Section III-C.
An image can be reconstructed by the coefficients composed of
two parts: 1) sparse coefficients and 2) mean intensity values.
The compression procedure of the proposed CCSR method is
summarized in Table I.

C. Quantization and Entropy Coding for the
Proposed Approach

Similar to encoding the DC coefficients in JPEG, we can
quantize mean intensity values m of image patches via divid-
ing by a quantization constant denoted by b, i.e., round(m/b).
Then, differential pulse-code modulation (DPCM) and
Huffman coding need to be applied in encoding the quan-
tized mean intensity values. The dynamic range of the mean
intensity values is [0, 255], much smaller than that of the
DC coefficients [4] in JPEG. Therefore, the proposed CCSR
approach can save some bits when encoding the DPCM-valued
mean intensities, in comparison with encoding DPCM values
of the DC coefficients in JPEG.

For quantizing the values of S largest sparse coefficients ŵS ,
the codebook with d 1-D codewords needs to be learnt first
by K-means method [27]. To be more specific, the learning
procedure is presented in the following.

1) Initializing the Codebook With d Codewords at Random:
The initial codewords can be randomly selected from the
1-D coefficients of ŵS .

2) Clustering ŵS Around Each Codeword: All 1-D coeffi-
cients in ŵS are divided into d clusters, with the least
distance to the codeword (i.e., the centroid point) of each
cluster.

3) Updating the New Set of Codewords: The codeword of
each cluster is computed by averaging the coefficients
belonging to each cluster.

4) Repeating Steps 2 and 3 Until Convergence: After
several iterations over clustering coefficients (Step 2)
and updating codewords (Step 3), the final codewords
are output, as the codebook for quantizing ŵS .

5Toward the lower bit-rate, some near-zero coefficients can be discarded,
since the coefficients are p-compressible.



XU et al.: CCSR WITH LEARNT DICTIONARY 1749

Given the learnt codebook, each coefficient of ŵS is quantized
by choosing the nearest matching codeword. Then, only the
index of the matching codeword in the codebook is needed
for entropy encoding. Here, Huffman coding is applied as
the entropy coding scheme to encode the codeword indices,
corresponding to the quantized values of ŵS . Such an entropy
coding scheme may save a lot of bits, due to the fact that
the quantized values of ŵS are distributed nonuniformly, after
considering the coefficient compressibility in (10). For an
image, a Huffman table has to be generated according to the
actual distributions of quantized ŵS , and then it is embedded
as the prefix in the encoded bitstream. Owing to the small
size of codebook for quantizing ŵS , there is little overhead of
the bit-rates on encoding the Huffman table. Once a decoder
receives the index of a codeword after Huffman decoding, it
replaces the index with the associated codeword, for obtaining
the dequantized coefficient values. Note that the mapping
from codeword indices to their corresponding values in the
codebook is included in the prefix of the resulting encoded bit-
stream. The cost of such a mapping is little in comparison with
the entropy coding of coefficients, since there are only a few
codewords in the codebook (to be discussed in Section V-B),
especially at low bit-rates. At last, the dequantized values of
ŵS can be obtained at the decoder.

In addition, the number of nonzero coefficients, from patch
to patch, needs to be known at the decoder. Similar to JPEG,
an end of patch (EOP) marker is applied in the proposed
approach to indicate that there does not exist any nonzero
coefficient at the current patch. Since our approach targets low
bit-rate image compression, three bits, instead of four bits in
JPEG, are utilized for encoding the information of EOP. This
results in an overhead of 0.037 bpp for 9 × 9 patches and
an overhead of 0.012 bpp for 16 × 16 patches. In addition,
the indices of nonzero coefficients ŵS relative to dictionary D
have to be known at the decoder so that the image patches
can be reconstructed by aggregating the elements of D with
their corresponding sparse coefficients. Hence, a fixed length
coding may be applied to encode the indices of ŵS , with the
bit depth being log2 l, where l is the element number of D.

For the output bitstream, the bits of each patch are arranged
in descending order of their corresponding coefficients. The
tradeoff between bit-rate and reconstruction quality can be
controlled by discarding the bits of small (near-zero) coef-
ficients. The remaining bits, belonging to the output bitstream
of several largest coefficients, determine the rate-distortion of
image compression. Note that only several patches need to
be encoded with Huffman and fixed length coding scheme,
since only the DPCM-valued mean intensities are encoded,
in particular at low bit-rates, for a great number of smooth
patches.

D. Decompression: Image Reconstruction With
Nonzero Coefficients

In this section, we move to the decompression step, in which
the target image can be reconstructed by the sparse coefficients
of image patches. First, at the decoder, coefficients of sparse
representation ŵk and mean intensity value mk of each image

patch can be extracted from the bitstream of ŵS and m.
Then, given ŵk and mk , image patch x̂k can be reconstructed
using (2) as

x̂k = Dŵk + mk . (15)

D is a learnt over-complete dictionary, the same as that of the
encoder. Finally, we can obtain image X̂ at the decoder, by
combining all reconstructed image patches {x̂k}K

k=1 together
in raster-scan order. Note that the ambiguity of the overlap-
ping pixels between neighboring patches can be avoided by
averaging their intensity values.

IV. OVER-COMPLETE DICTIONARY LEARNING

FOR IMAGE COMPRESSION

Now, the only task left for the proposed CCSR approach
is to learn the over-complete dictionary of texture off-line
from training images. In this paper, we use a gradient descent
algorithm to learn the over-complete dictionary of texture
patterns, D ∈ R

n×l . Assume that X∗ = {x∗
1, . . . , x∗

t , . . . , x∗
T }

is the set of training image patches, randomly extracted
from training images. Then, training texture patches Y∗ =
{y∗

1, . . . , y∗
t , . . . , y∗

T } can be obtained by subtracting the mean
intensity values from each training image patch. According
to (10), the problem of learning D can be formulated as

min
D,W∗

∑
t

∣∣∣∣y∗
t − Dw∗

t

∣∣∣∣2
2 +

∣∣∣∣∣∣
(

μ∗
t w∗

t
γ ∗

t f
(
w∗

t

)
τ

) ∣∣∣∣∣∣
1

s.t.
∣∣∣∣d1

∣∣∣∣
2 = 1, . . . ,

∣∣∣∣dl
∣∣∣∣

2 = 1 (16)

where W∗ = {w∗
1, . . . , w∗

t , . . . , w∗
T } is the set of sparse

coefficients, corresponding to texture patches Y∗, with respect
to over-complete dictionary D = [d1, . . . , dl ]. Here, d1, . . . , dl

are the columns of D, seen as the basic texture elements in the
over-complete dictionary, and they are all normalized to 1, to
eliminate the scaling ambiguity of coefficients. In addition,
the settings of μ∗

t and γ ∗
t are the same as those of the

CCSR formulation in Section III, i.e., μ∗
t = c2σ−2(y∗

t ) and
γ ∗

t = μ∗−1
t . Note that different from (10), this formulation

does not consider any compatibility between neighboring
patches, since the (randomly selected) training image patches
are independent of each other.

Learning dictionary D can be modeled as the optimization
problem in (16), solved by minimizing the square reconstruc-
tion error and enforcing the coefficients sparse and compress-
ible. Equation (16) is convex [21] in terms of D, with W∗
being fixed. Given a fixed D, W∗ in (16) can be solved using
the method of Section III-B. As such, D can be learnt with
the following two recursive steps.

At the first step, we can estimate coefficients W∗ by

W∗ = arg min
W∗

∑
t

∣∣∣∣y∗
t − Dw∗

t

∣∣∣∣2
2 +

∣∣∣∣
∣∣∣∣
(

μ∗
t w∗

t
γ ∗

t f
(
w∗

t

)
τ

) ∣∣∣∣
∣∣∣∣
1

(17)

with D being fixed. D may be initialized to be a group of ran-
domly selected training texture patches, with each column unit
being normalized. Equation (17) can be solved by the recursive
linear programming method introduced in Section III-B.
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TABLE II

OVER-COMPLETE DICTIONARY LEARNING ALGORITHM FOR THE

PROPOSED IMAGE COMPRESSION APPROACH

Fig. 3. (a) Learnt over-complete dictionary with element size being 9 × 9.
(b) Learnt over-complete dictionary with element size being 16 × 16. They
were both trained from 100 000 randomly selected image patches, using the
method summarized in Table II. Each small grid with (a) 9 × 9 pixels and
(b) 16 × 16 pixels, stands for one element of the dictionaries, reflecting a basic
texture pattern.

At the second step, we can fix W∗ and then update
dictionary D via

D = arg min
D

∑
t

∣∣∣∣y∗
t − Dw∗

t

∣∣∣∣2
2

s.t. ||d1||2 = 1, . . . , ||dl ||2 = 1. (18)

Given the above equation, D can be updated iteratively with
gradient descent

D j = D j−1 − η
∂

∂D

∑
t

∣∣∣∣y∗
t − Dw∗

t

∣∣∣∣2
2|D j−1

(19)

where D j is the value of dictionary D at the j th iteration, and
η (= 0.01) is the learning rate of gradient descent. It is proved
in the Appendix that

∂

∂D

∑
t

∣∣∣∣y∗
t − Dw∗

t

∣∣∣∣2
2 = 2

∑
t

(
Dw∗

t w∗T
t − y∗

t w∗T
t

)
. (20)

Consequently, (19) can be rewritten as

D j = D j−1 − 2η
∑

t

(
D j−1w∗

t w∗T
t − y∗

t w∗T
t

)
(21)

TABLE III

PARAMETER SETTINGS OF THE PROPOSED CCSR APPROACH

Fig. 4. Curves of the average rate-distortion performance on compressing
the standard images of peppers, finishing boat, truck, and couple, using the
proposed CCSR approach with varying codebook size d. For a given d, the
rate-distortion curve was generated by preserving different amounts of largest
coefficients (denoted by S). (a) SR9. (b) SR16. Note that SR16 and SR9 are
abbreviations of the proposed CCSR approach with patch sizes being 16×16
and 9 × 9, respectively.

where D j needs to be iteratively updated toward convergence.
In addition, D j has to be renormalized at each iteration
to make the �2-norm of each column of D j one. In (21),∑

t (D j−1w∗
t w∗T

t −y∗
t w∗T

t ) can be seen as the residual of each
iteration.

Then, the above two steps, as summarized in (17) and (21),
need to be run recursively until reaching a halting criterion.
Table II shows the procedure of learning over-complete dic-
tionary. Note that both the inner and outer loops of Table II
are repeated until the halting criterions are triggered. In the
experiments of this paper, we merely considered fixed iteration
numbers as the halting criterions. Some other stopping rules
may also be effective. For example, the outer loop may be
terminated once

∑
t

∣∣∣∣y∗
t −Dw∗

t

∣∣∣∣2
2+μ∗

t

∣∣∣∣w∗
t

∣∣∣∣
1+γ ∗

t

∣∣∣∣ f (w∗
t )τ

∣∣∣∣
1

is less than a threshold.

V. EXPERIMENTAL RESULTS

In this section, experiments of image compression were
performed on extensive images, to validate the proposed CCSR
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TABLE IV

SETTINGS OF PARAMETER d IN THE CCSR APPROACH

Fig. 5. Reconstructed Lena images (resolution: 512 × 512) of our CCSR
approach with and without considering the neighboring patch compatibility.
PSNRs of the reconstructed images: (a) 37.66 dB, (b) 37.56 dB, (c) 31.79 dB,
and (d) 31. 61 dB.

Fig. 6. Rate-distortion comparison of compressing the Lena image (resolu-
tion: 512 × 512) with different constraints on coefficient compressibility. (a)
SR9. (b) SR16.

approach. For simplicity, we focused on gray images. For
the sake of comparison, JPEG 2 000, RLS-DLA [17], and
MP [10] approaches were employed to compress exactly

Fig. 7. Rate-distortion curves of compressing the Lena images (resolution:
512 × 512) using JPEG 2 000, RLS-DLA, MP, and the proposed CCSR
approaches. Note that SR16 and SR9 stand for the proposed CCSR approach
with patch sizes being 16 × 16 and 9 × 9, respectively. (a) PSNR. (b) SSIM.

the same images. Here, MP can be seen as a conventional
image compression approach, based on sparse representation
with predefined dictionary, while RLS-DLA is a state-of-
the-art approach, in the spirit of sparse representation with
learnt dictionary. Note that the dictionary in the MP approach
is independent of training images, while the dictionary in
RLS-DLA approach relies on training images. The training
images of both RLS-DLA and our CCSR approaches were
selected from the Berkeley image database, and they were not
used as the testing images. In addition, the parameter settings
for RLS-DLA and MP approaches were the same as the ones
used in [10] and [17]. For JPEG 2 000, the Jasper software [28]
was applied, with its default settings.

In the following, Section V-A focuses on learning
the prior over-complete dictionary for image compression.
In Section V-B, we present the parameter selection of our
approach. Then, using the learnt dictionary of Section V-A
and parameter settings of Section V-B, Section V-C evaluates
the benefits of neighboring patch compatibility and coeffi-
cient compressibility, which are introduced by our approach.
Finally, Section V-D compares the experimental results of
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Fig. 8. Lena images (resolution: 512 × 512) compressed by (a) RLS-DLA, (b) JPEG 2 000, (c) MP, and (d) proposed CCSR approaches, at 0.1 bpp.

Fig. 9. Three original input images for image compression. The resolutions
of all these images are 256 × 256. (a) Camera man. (b) Rice. (c) Ambulance.

different approaches on compressing the natural images as well
as the remote sensing images.

A. Over-Complete Dictionary Learnt for Image Compression

To compress images with the proposed method, the over-
complete dictionary has to be learnt and stored in advance.
Here, the over-complete dictionary was learnt from 100 000
training image patches, using the method of Section IV.
All these image patches were randomly selected6 from
100 images of the Berkeley image database, in which no
remote sensing image was involved. Note that in this section,
the parameter settings for dictionary learning were the same
as those for sparse representation on compressing images, as
reported in Section V-B.

Fig. 3 shows the learnt dictionaries. It has been revealed
empirically that the optimal selection of the number of
elements for a dictionary is ∼4 times of the patch size
(i.e., the dictionary redundancy is 4) for reconstructing facial
images [15] and generic natural images [29]. Thereby, the
dictionary in Fig. 3(a) contains 320 elements of 9 × 9
texture patches and the dictionary in Fig. 3(b) includes 1 000
elements of 16 × 16 texture patches. It can be seen from
this figure that the basic patterns of texture patches, e.g., the
regular surfaces and orientated edges, are encoded in the learnt
dictionaries. Since most natural scenes are normally comprised
of the objects with various regular texture patterns, the learnt
dictionaries are able to well represent natural images.

B. Selection of Parameters

In our experiments, the parameter settings of our CCSR
approach are tabulated in Table III. To be more specific,

6As the patches were extracted for learning the dictionary of texture patterns,
the smooth patches with little variance of pixel intensities were discarded when
learning dictionary.

in the dictionary learning step, we chose 100 and 50 as the
inner and outer iteration numbers, respectively. In addition, we
followed [19] in the setting of η = 0.01. In the compression
step, we applied the same choice of λ = 1 as the previous
work of super resolution [21]. Then, we utilized the decay
rate of wavelet coefficients [26] to set p = 1.67. We fur-
ther compared the rate-distortion performance under different
values of p in Section V-C (Fig. 6), to show the effectiveness
of p = 1.67. After obtaining sparse coefficients, the bits
produced by quantized mean intensity values after DPCM only
take up a small amount of total bits in image compression,
but greatly influence the distortion. Therefore, a small value
of 4 was chosen for quantization constant b. At last, c was
empirically set to 4, for generally yielding the satisfactory
results, in terms of rate-distortion performance.

In addition, it is interesting to analyze the tradeoff between
the number of coefficients used to represent an image and the
average number of bits allocated to each coefficient. In the
proposed CCSR approach, the average number of bits allo-
cated to each coefficient relies on the codebook size (denoted
by d) during the quantization step. In addition, the number of
coefficients used to represent an image in the CCSR approach
is controlled by two factors: 1) μ denoted by c2σ−2(yk) for
the coefficient sparsity and 2) S largest coefficients preserved
for image reconstruction.

Four generic standard images from the SIPI database [30]
(including peppers, fishing boat, truck, and couple) were
utilized to analyze the tradeoff between the number of coeffi-
cients used to represent an image and the average number of
bits allocated to each coefficient. Fig. 4 shows the average
rate-distortion curves of the proposed CCSR approach on
compressing the four standard images for varying codebook
size d . This figure implies that d has to be increased along
with the rising bit-rate toward the optimal rate-distortion
performance. In light of Fig. 4, the settings of d are listed in
Table IV, for achieving the empirically optimal rate-distortion
performance in SR9 (the proposed CCSR approach with 9×9
patch) and SR16 (the proposed CCSR approach with 16 × 16
patch).

C. Evaluation of Neighboring Patch Compatibility and
Coefficient Compressibility

Since the proposed CCSR approach introduces new terms
in (10) to guarantee the neighboring patch compatibility and
coefficient compressibility, it is important to evaluate their
benefits to low bit-rate image compression. In this section,
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Fig. 10. Images compressed by (a) RLS-DLA, (b) JPEG 2 000, (c) MP, and (d) proposed CCSR approaches, at 0.4 bpp.

Fig. 11. Images compressed by (a) RLS-DLA, (b) JPEG 2 000, (c) MP, and (d) proposed CCSR approaches, at 0.1 bpp.

TABLE V

PSNRS(dB)/SSIMS OF RECONSTRUCTED NATURAL IMAGES BY DIFFERENT COMPRESSION APPROACHES

TABLE VI

PSNRS(dB)/SSIMS OF RECONSTRUCTED REMOTE SENSING IMAGES BY DIFFERENT COMPRESSION APPROACHES

we analyze such benefits through the experiment of compress-
ing the Lena image.

Fig. 5 shows the reconstructed Lena images compressed by
SR9 at 0.4 bpp and SR16 at 0.1 bpp, respectively. In this figure,
the comparison is conducted on the proposed approach with
and without considering the neighboring patch compatibility.
Here, one pixel overlap was applied for the neighboring
patch compatibility. As expected, reducing the block effect
improves the visual quality of the reconstructed images with

little artifacts at boundaries, but slightly reduces the PSNRs of
the reconstructed images, as there is a trade-off between the
neighboring patch compatibility and the mean squared error.7

Consequently, one pixel overlap is sufficient for neighboring
patch compatibility while effectively reducing block effect.

7Along with the increased number of overlapping pixels, more patches have
to be encoded. This results in more bits on encoding an input image, given
the same reconstruction quality.
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Fig. 12. Four original remote sensing images for compression. (a) Tsinghua
Campus. (b) West Concord. (c) Road. (d) Concord (Sub-region).

Next, it is worth investigating the importance of coeffi-
cient compressibility on the rate-distortion performance of
our CCSR approach. For the scenario of not enforcing coef-
ficients compressible, we simply removed the constraint on
compressibility by setting γ to 0 in (10). In addition, we
applied our approach with decay rate p = 1.67 and 1, to
analyze the impact of varying compressibility. Note that the
over-complete dictionary was redesigned upon (16), with the
same p and γ as (10) that are changed in this section.
Fig. 6 shows the rate-distortion comparison of compressing
the Lena image, using the proposed CCSR approach with
varying coefficient compressibility and without coefficient
compressibility. We can see from this figure that the coefficient
compressibility demonstrates the advantage of the proposed
approach in promoting the coding efficiency, especially at low
bit-rates. However, the large compressibility (e.g., p = 1) can
only achieve good rate-distortion performance at a specific low
bit-rate, and is not well adaptive to the change of bit-rates.
On the other hand, despite good adaptivity, small compress-
ibility (e.g., γ = 0) cannot yield appropriate rate-distortion
performance at low bit-rates. Therefore, in the CCSR approach
there exists a tradeoff between adaptivity and low bit-rate rate-
distortion performance. In this paper, we chose p = 1.67 to
ensure that the CCSR approach works well at low bit-rates
and is suitable for various bit-rates.

D. Evaluation of the Performance on Low Bit-Rate
Image Compression

In this section, we concentrate on the performance evalua-
tion of the proposed CCSR approach on compressing several
natural images, including Lena, Camera man, Rices, Ambu-
lance, as well as some remote sensing images.

First, in Fig. 7 we show the rate-distortion curves of the
proposed and other conventional approaches on compressing
the Lena image. The distortion in this figure was evaluated in
terms of PSNR and structural similarity (SSIM) [31], from the
aspects of both objective and subjective reconstruction quality.
This figure demonstrates that the rate-distortion performance
of our CCSR approach is superior to JPEG 2 000, RLS-DLA,
and MP approaches, at low bit-rates. We can further observe
that if the bit-rate is >0.3 bpp, the performance of our CCSR
approach with 9 × 9 patches (SR9) is better than that with
16 × 16 patches (SR16); otherwise SR16 outperforms SR9.
Therefore, in the subsequent experiments, our CCSR approach
utilized 9×9 patches at 0.4 bpp and 16×16 patches at 0.1 bpp.

Fig. 8 shows the visual quality of the Lena images
compressed by different approaches at 0.1 bpp. From this

figure, it can be observed that the reconstructed image by
JPEG 2 000 has many blurring effects in some regions, and
that the reconstructed image by RLS-DLA yields many jagged
effects along the edges. Although MP produces more pleasant
visual quality, it fails in encoding the texture details, e.g.,
the eyes and hairs. Compared with JPEG 2 000, RLS-DLA,
and MP, the proposed CCSR approach indeed provides
better visual quality with more detailed texture and less
blurring/jagged effects. However, the CCSR approach cannot
totally eliminate the block effect, even the neighboring patch
compatibility having been embedded. Other postprocessing
deblocking algorithms, such as [32], may be applied to further
deal with blocking artifacts of the CCSR approach. In a word,
the proposed CCSR approach visually outperforms the
JPEG 2 000, RLS-DLA, and MP approaches, when
compressing the Lena image at low bit-rates.

Also, we tested the proposed CCSR approach on other
nine natural images, chosen from the Internet, MATLAB
toolbox, and the SIPI database [30]. The compression bit-
rates were set to 0.4 and 0.1 bpp, respectively. As discussed
above, 9 × 9 patches were applied for image compression at
0.4 bpp (denoted by SR9), and 16 × 16 patches were utilized
at 0.1 bpp (denoted by SR16). We report in Table V the
reconstruction errors of the nine compressed images, evaluated
in terms of PSNR and SSIM. Note that in Table V the images
of Plane, Tank, Elaine, and Clock were chosen from the SIPI
database. Fig. 9 shows the three original images of Camera
man, Rices, and Ambulance. Beyond the results of Table V,
Figs. 10 and 11 show the visual quality of the three images
in Fig. 9, compressed by JPEG 2 000, RLS-DLA, MP, and
the CCSR approaches. From Figs. 9–11 and Table V, we
can see that in comparison with JPEG 2 000, RLS-DLA, and
MP, our CCSR approach again offers the better performance
on compressing most images at 0.4 bpp, in both visual and
objective quality, and we can also see that for lower bit-
rate (at 0.1 bpp) our CCSR approach provides much better
visual and objective quality than the other three approaches,
on compressing all images.

Now, we move to the compression results on the remote
sensing images of Fig. 12. Figs. 13 and 14 show the recon-
structed images of the proposed CCSR approach and other
conventional approaches, at 0.1 or 0.4 bpp. As seen there,
compared with the conventional JPEG 2 000, RLS-DLA, and
MP approaches, the CCSR approach yields more favorable
visual quality with sharper edges and less blurred texture,
especially at 0.1 bpp. However, it still suffers from the loss
of small features. This is probably due to the fact that only
high-valued coefficients of the CCSR approach are preserved
at low bit-rates for the global features (e.g., object edges), and
a large amount of low-valued coefficients reflecting detailed
texture are discarded. Of course, the loss of detailed texture
can be relieved by decreasing coefficient compressibility. As
the cost, the global features, however, may be degraded
heavily.

Table VI further tabulates the distortion of compressing
the remote sensing images of Fig. 12, in the form of both
PSNR and SSIM. Figs. 13 and 14 and Table VI clearly
reveal that although there is no remote sensing image involved
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Fig. 13. Remote sensing images of Fig. 12(a) and (b) compressed by (a) RLS-DLA, (b) JPEG 2 000, (c) MP, and (d) CCSR approaches, at 0.1 bpp.

Fig. 14. Remote sensing images of Fig. 12(c) and (d) compressed by (a) RLS-DLA, (b) JPEG 2 000, (c) MP, and (d) CCSR approaches, at 0.4 bpp.

in dictionary learning, the proposed CCSR approach is still
capable of compressing the remote sensing images effectively
at low bit-rates.

VI. CONCLUSION

In this paper, we have proposed a CCSR approach with
learnt over-complete dictionary for compressing images at low
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bit-rates. More specifically, in our CCSR approach, given the
learnt over-complete dictionary, an image patch can be well
represented with the linear combination of elements selected
from this dictionary, based on the coefficients constrained by
the proposed CCSR formulation. Then, a recursive algorithm
was proposed to solve the linear optimization problem of
the CCSR formulation, to obtain the sparse and compressible
coefficients. Finally, the CCSR approach is capable of
compressing images through the quantization and entropy
encoding of compressible coefficients. Besides, the over-
complete dictionary can be learnt off-line from a set of training
image patches, using a gradient descent algorithm. The
experimental results demonstrated that the proposed CCSR
approach greatly outperforms the conventional JPEG 2 000,
RLS-DLA, and MP approaches in compressing images at
low bit-rates.

Since the scope of this paper mainly concentrates on the
sparse representation with learnt over-complete dictionary,
it simply utilizes K-means method and Huffman coding as
the scheme of quantization and entropy coding, for image
compression. Other optimal quantization and entropy coding,
for the proposed CCSR approach, is one of our future research
directions. In addition, our CCSR approach can be further
applied to video coding by considering the variational texture
patches among the neighboring image frames. This can be
considered as one of the promising future research directions.
Also, the study on the robustness of our approach against
corrupted data (e.g., lost coefficients) can be seen as another
future direction.

APPENDIX

PROOF OF (20)

We apply the matrix differentiation to derive the derivative
formulation of (20). First, we expand (20) to∑

t

∣∣∣∣y∗
t − Dw∗

t

∣∣∣∣2
2 =

∑
t

tr
(
(y∗

t − Dw∗
t )(y

∗
t − Dw∗

t )
T
)

=
∑

t

tr
(
y∗

t y∗T
t

) − 2tr
(
Dw∗

t y∗T
t

) + tr
(
Dw∗

t w∗T
t DT )

. (22)

Since y∗
t as the training texture patch has already been known,

the derivative of the above equation, with respect to D, can be
written as

∂

∂D

∑
t

∣∣∣∣y∗
t − Dw∗

t

∣∣∣∣2
2

= ∂

∂D

∑
t

tr
(
Dw∗

t w∗T
t DT ) − ∂

∂D

∑
t

tr
(
2Dw∗

t y∗T
t

)
. (23)

Next, as w∗
t w∗T

t is symmetric matrix, using the rules of
derivative of matrix traces [33] we can obtain

∂

∂D

∑
t

tr
(
Dw∗

t w∗T
t DT ) =

∑
t

2Dw∗
t w∗T

t (24)

and
∂

∂D

∑
t

tr
(
2Dw∗

t y∗T
t

) =
∑

t

2y∗
t w∗T

t . (25)

Therefore, with w∗
t being fixed, (23) can be rewritten as

∂

∂D

∑
t

∣∣∣∣y∗
t − Dw∗

t

∣∣∣∣2
2 = 2

∑
t

(
Dw∗
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t w∗T
t

)
. (26)

Finally, (20) is obtained.
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