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Abstract—The latest High Efficiency Video Coding (HEVC)
standard significantly improves coding efficiency over its pevious  £3
video coding standards. The expense of such improvement is3
enormous computational complexity, from both encoding and
decoding sides. Since computational capability and powerapac-
ity are diverse across portable devices, it is necessary t@duce
decoding complexity to a target with tolerable quality loss so
called complexity control. This paper proposes a Saliencuided
Complexity Control (SGCC) approach for HEVC decoding,
which reduces the decoding complexity to the target with mifmal
perceptual quality loss. First, we establish the SGCC formlation
to minimize perceptual quality loss at the constraint on rediced
decoding complexity, which is achieved via disabling Debtking
Filter (DF) and simplifying Motion Compensation (MC) of some
non-salient Coding Tree Units (CTUs). One important compoent
in this formulation is the modelled relationship between deoding
complexity reduction and DF disabling/MC simplification, which
determines the control accuracy of our approach. Another encoded and uploaded to YouTube is only around 65 thousands
component is the modelled relationship between quality Ias every day, while there are about 100 millions videos are

and DF disabling/MC simplification, responsible for optimizing . .
perceptual qual_ity. By solving the_ SGCC formulation for a given deCOded and viewed _everyday. The number of decoded videos
target complexity, we can obtain the DF and MC settings of IS more than 1,000 times of encoded videos. Therefore, the
each CTU, and then decoding complexity can be reduced to the study on complexity reduction is more urgent for decoding.
target. Finally, the experimental results validate the eféctiveness Moreover, different devices may be diverse in computa-
of our SGCC approach, from the aspects of control performane, - yjona| capability. For example, the computational capabil
co[)r)plexlty-dlstlgrtlon performance, fluctuation of quality loss and of laptops (e.g, MacBook) is p,robably over twice higher than
subjective quality. I _ '
that of tablets (e.g., iPad) [12]. Therefore, HEVC decoding
need to be adaptive to diverse computational capabilitat Th
is, it is necessary to study on reducing HEVC decoding
complexity to a target, via developing complexity control
approach. Unfortunately, to our best knowledge, theretexis
A. Background few works on complexity control for HEVC decoding. In this
IGH Efficiency Video Coding (HEVC) standard [1] waspaper, we propose an efficient approach to achieve this goal.
officially approved in April 2013, significantly improv-
ing the_ efficiency of _video cod_ing._ It is ab_le to save around. Related works
60% bit rates with similar subjective quality [2], compared In early time, there existed a handful of studies [13], [14] o

with its former H.264/AVC standard. However, the cost of biéecoding complexity reduction, for the previous H.264/A%C

rate saving in HEVC is the huge computational CompleXi%ndard. Most recently, several approaches [15]-[24] baem

[3], from the aspects of both encoding and decoding. It IS . N
thus necessary to reduce encoding and decoding compleﬁﬁgposed to reduce decoding complexity/time, for the tates

. VC standard. Among them, there are two main research
of HEVC. The past couple of years have witnessed extensi ﬁectionS' hardware-based and algorithmic aporoaches
works [4]-[10] on encoding complexity reduction for HEVC. ' 9 bp '

. . Some works, such as [15]-[20], have been devoted to accel-
Unfortunately, there are relatively few approaches on cetu ) ; : .
HEVC decoding complexity. Actually, decoding is far moreratlng the HEVC decoding speed using hardware techniques.

common than encoding for existing coding standards innt_l;ldi‘?:or example, Yaret al. [15] and Chiet al. [16] proposed to

: = take advantage of Single Instruction Multiple Data (SIMD)
HEVC. For example, according to [11], the amount of VIdeO|§structions for increasing HEVC decoding speed. Soeiza
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1. An example of our SGCC approach. Note that each column
responds to a specific target for HEVC decoding complenatiuction.
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I. INTRODUCTION



frame rate. The above approaches can save HEVC decodiog best knowledge, there exists no approach on controlling
time in some specific hardware, but they cannot reduce tlecoding complexity for the latest HEVC standard or for
complexity and power consumed by HEVC decoding. Faff-line scenarios. More importantly, for HEVC all exisgin
reducing power consumption, [13] and [26] were proposed tmmplexity reduction approaches do not take perceptuafvis
dynamically adjust the frequency of CPU, taking advantégge quality into consideration, which can be well modelled by
Dynamic Voltage and Frequency Scaling (DVFS) technologyideo saliency [28]-[30].

As such, the decoding power consumption can be reduced for

H.264/AVC [13] and HEVC [26], by means of the dynamic

adjustment of CPU frequency. In the Field-ProgrammableGat o

Array (FPGA) platform, [20] achieved the power reductior(F' Our work and contributions

in HEVC decoding, by designing a high-performance intra
prediction hardware based on Verilog Hardware Descriptio
Language (Verilog HDL). However, all these approaches ¢
be merely implemented on the specific hardware (e.g., G
with SIMD, DVFS, FPGA, etc.) at the decoder side, and th
are hardly adaptive to generic hardware.

In this paper, we propose a Saliency-Guided Complexity
ntrol (SGCC) approach, which controls decoding complex-
of HEVC, with minimization on perceptual quality loss
odelled by video saliency. In our approach, we first use
e method of [31] to predict video saliency map in HEVC
: } mpression domain. Then, perceptual quality is modelled,
For overcoming the drawback of hardware-based approa?rlft?owhich Mean Square Error (MSE) is weighted with the

es, some algorithmic approaches have been developed . . .
decrease video decoding complexity, via simplifying some e_correspondlng saliency values. Second, the SGCC formulati

; - - d to minimize the loss of perceptual quality, when
coding/decoding components. These approaches include [iﬁ propose ) . .
[21]-[24]. For H.264/AVC, Liuet al. [14] proposed to detect reducing HEVC decoding complexity to the target. Since DF

Region-of-Interest (ROI), and to allocate less computtio and MC take up large proportions in the decoding time of
9 (ROD) b EVC, the decoding complexity is reduced in our SGCC

resources to non-ROIs. Specifically, the total decoding-co ) . . S
b y d E’)rmulanon by disabling DF and simplifying MC for some

plexity can be reduced with simplified coding component , . X : .
according to an ROI based Rate-Distortion-Complexity (R_[pon-sallent CTUs. Third, the relationship between deapdin

: : lexity reduction and DF disabling/MC simplification is
C) cost function. Later, Naccast al. [21] proposed an ap- comp : - )
proach for reducing decoding complexity of both H.264/AVC‘,T'°de'le‘.j for.the SGC.C fo_r_mullatlon. Slmllarly, th? mfluence
and HEVC. In [21], the offsets in Deblocking Filter (DF)Of DF disabling/MC simplification on visual quality is also

are estimated with optimization on Generalized Block-ed gge(:”?d' Flr)ally, WE ﬁev;:l;ggdsoluél.on to thle Pmpos‘;d
Impairment Metric (GBIM), instead of the conventional &ut ormation, such that ecoding complexity can be

force optimization. This way, the computational complgxit controlled to a target, while the perceptual quality is wyitied.

decoding can be saved. For HEVC, the decoding complexityFig. 1 shows an example of our SGCC approach. As seen
is reduced in [22], by modifying the structure of predictioi Fig. 1, the video quality degrades along with the redurctio
during encoding. However, [22] is not practical for alread9f decoding complexity. However, when decoding complexity
encoded videos, since it requires the modification at the dgduces, our SGCC approach preserves the visual quality of
coder side. Most recently, [23] and [24] have been proposed®O! (€.9., face), while the quality of non-ROI degrades. As
modify the components at the decoder side, to make decodfittgh. the perceptual quality can be optimized by our SGCC
complexity reduction more practical in HEVC. To be mor@pproach, when reducing decoding complexity of HEVC.
specific, they proposed to remove some in-loop filters, and toTo our best knowledge, our SGCC approach is the first work
shorten the FIR filter sizes in Motion Compensation (MC}p reduce decoding complexity to a target (i.e., complexity
such that HEVC decoding complexity can be reduced. bontrol) for HEVC, and it is also the first one to minimize
comparison with hardware-based approaches, the algacithmperceptual quality loss in decoding complexity reduction f
approaches on decoding complexity reduction can be implEVC. This paper is an extended version of our conference
mented in any power-limited devices, but at the expense pdper [32], with extensive advanced works summarized as
visual quality loss. follows. (1) We propose to simplify MC in our new SGCC

Unfortunately, all above approaches, from both hardwareptimization formulation, with the well modelled relatitip
based and algorithmic aspects, cannot reduce the decodingpng MC simplification, quality degradation and complexit
complexity to a given target, leading to insufficient or vedigt reduction. As a result, the Maximal Achievable Reduction
use of power resources in some portable devices. There @WMAR) of HEVC decoding can increase from 15% to
only a few works on controlling decoding complexity for~ 40%. (2) For the new SGCC optimization, an efficient
video coding. For example, Langrooeli al. [27] developed a solution is mathematically derived. (3) The performance of
decoding complexity control approach for H.264/AVC. InJ27 our SGCC approach is thoroughly evaluated with more test
the decoder sends its computational resource demand to shquences, comparing approaches and evaluation met@acs, t
encoder side. Then, MC is optimized at the encoder side, sy8R]. As HEVC normally has hierarchical coding structure,
that decoding complexity can be controlled at the decodier. sitemporal scalability may be applied to save some decoding
However, [27] can be only applied to the previous H.264/AV€omplexity, which drops some upper layer frames without
standard, and it is not suitable for off-line decoding besaudecoding. Our SGCC approach can be combined with temporal
of the communication between encoder and decode sides.stalability to achieve higher reduction of decoding comitye



TABLE |
COMPARISON OF SALIENCY DETECTION PERFORMANCE

Original [31] | Simplified [31] | PQFT [33] | Rudoy [34] | OBDL [35] | Itti [36] | Fang [37]
AUC 0.80 0.78 0.64 0.75 0.75 0.67 0.78
NSS 1.27 1.19 0.48 1.10 0.96 0.45 1.26
CcC 0.42 0.39 0.16 0.37 0.30 0.14 0.38

Il. FORMULATION FOR SALIENCY-GUIDED CoMPLEXITY  for saliency detection. However, computing these complex

CONTROL APPROACH features and applying the SVM consume high computational
time, i.e., averagely 140 ms per frame. This leads to huge
(gomputational time overhead in the HEVC decoder. Since our

In [3], it ha_ms been ver|_f|ed tr:)at D'; takes up 13%'37% o»>CCC approach aims at reducing the decoding complexity
HEVC decoding complexity (13%-279% for x86 and 13%-209; k¢ e simplify [31] to significantly reduce the time
for ARM). Hence, HEVC decoding complexity can be reduceg '

. } ; verhead of saliency detection.
by disabling DF of some CTUs. We defing € {0,1} to o : .
indicate whether the DF of the-th CTU is enabled {, — We simplify [31] according to the two facts verified by

. . . both [31] and our experiments. (1) Bits allocation and it
0) or disabled {,, = 1). Given saliency valuev,, of each [31] ur experl s (1) Bits ! 'S

CTU, we defineAC(f ) as the decoding complexitySpatial contrast make the most essential contribution ¢o th
f D w, . . . . .

; T . . accuracy of saliency detection; (2) Replacing the SVM with
reduction of a frame caused by disabling the DF of the y y (2) Rep g

li inati lightl h f nalj
th CTU. Note that, in this paper, the decoding complexity inear combination slightly reduces the accuracy of saje

: . ) . etection, but saving extensive computational time. Tioeee
HEVC is measured by the computational time on a Wmdowﬁ - - ;
: X e saliency value of the-th CTU, defined asv,,, is detected
PC with Inter(R) Core(TM) i7-4790K CPU. Y

. . by the linear combination of bits allocation and its spatial
0/4- 0,
Also, [3] has investigated that MC consumes 35%-61% %f)/ntrast, such that the computational time can be significan

HEVC decoding comple_xity. (37%'61% for x86 a_nd 350/Ofeduced with slight accuracy loss of saliency detectioratTh
53% for ARM). Thus, simplifying MC is an effective way is, w, is calculated by

to reduce HEVC decoding complexity. In MC, each sampie’ " Ly Ab
of a CTU is calculated according to the corresponding sasnple Wy, = i L

_( )7 (1)
in the reference frames. To save decoding complexity, the MC Lo 2 bmaa Ab"““‘_ .
step can be skipped for some prediction samples. Inste%‘erebn and Ab,, indicate allocated bits and spatial contrast

these samples are reconstructed by Nearest Neighbor (,\ﬂ(l)'bit allocation for the@-th CTU, respe.ctively. In addition,
interpolation from neighboring prediction samples, whige Umaz andAbng, are defined as the maximal valuesbpfand
generated by the original MC step. In our method, for theb» in @ frame. In (1),Ab, is calculated as follows,

A. Preliminary of decoding complexity

1

n-th CTU, g, € {0,1,2,3} defines thatg,,/4 of each four S ex (Jl?_u)(b L~ bn)? 3
samples are estimated by NN interpolation rather than apply Ab, = n'el P50 " " 7 )
ing MC. The remaining1 — g,,/4) of prediction samples are Sl exp(,gu%)

b

decoded with the original MC step, as the reference for NN ) ) ) )

interpolation. As a resuli, implies the degree of simplifying Where ! is the set of 8-neighboring CTUs, andl, is the
MC. For exampleg, = 3 indicates the highest degree offuclidean distance between the-th and n-th CTUs in
the simplification, as3/4 of total samples in the:-th CTU pixel domain. After ou_r5|mpl|f|cat|on, saliency detectionly
skip MC. AC; (gn, wy,) is defined as the decoding complexitFonsumes 0.058 ms time overhead per 1080p frame, much less

reduction of a frame, due to simplifying MC of theth cTU. than HEVC decoding complexity. »
Moreover, we evaluate the performance of both the original

o . ) ) and simplified version of [31] in terms of Area Under Receiver

B. Preliminary of saliency weighted quality Operating Characteristic Curve (AUC), Normalized Scahpat

As the cost of decoding complexity reduction, the visuSaliency (NSS) and linear Correlation Coefficient (CC) [38]
al quality of decoded videos degrades (as Fig. 2 show3he evaluation is tested over all the 15 (excluding 10-bit)
Fortunately, it has been investigated [29], [30] that visugequences from Classes A-D of JCT-VC databse [39]. The
attention of the HVS does not focus on the whole picturaveraged AUC, NSS and CC for the simplified version of [31]
but only a small region around fixation (called foveal vigionis 0.78, 1.19 and 0.39, respectively. They are slightly lowe
Hence, visual attention is taken into account in our apgdroathan the original version of [31] (AUC = 0.80, NSS = 1.27
to minimize the perceptual quality degradation. and CC = 0.42), but over 2000 times computational time can

In this paper, we use the compression domain salienbg saved.
detection method [31] to directly obtain the saliency val- Furthermore, we also compare the performance of the
ue of each CTU from HEVC bitstreams. Specifically, [31$implified and original versions of [31] with other state-of
proposed to detect saliency maps using HEVC domain fdahe-art saliency detection methods. The results are shown i
tures, including bits allocation, motion vectors, spiigfidepth Table I. It can be seen that the performance of the simplified
and their spatial and temporal contrasts. Then, a Suppeersion of [31] is comparable to or even better than other
Vector Machine (SVM) is learnt to combine these featuregate-of-the-art saliency detection methods.



TABLE Il
VALUES OF ERROR RATEAC (%)FOR ALL TRAINING SEQUENCES

‘ -+- Cactus === BasketballDrive BQMall BasketballDrill

fn=1,gn =1 fn=19gn =2 fn=1,9n =3
QP 22 27 32 37 22 27 32 37 22 27 32 37
T 07 | 23 | 29 | 12 | 26 | 27 | 00 | 1.9 | 20 | 17 | 04 | 06
2 0.3 0.7 0.4 0.3 3.3 1.2 0.3 1.1 1.3 0.0 1.0 1.6
3 03 | 01 | 02 | 00 | 19 | 120 | 82 | 04 | 02 | 20 | 03L | 15
2.1 0.9 1.0 0.2 4.8 0.5 0.1 0.6 2.3 1.6 2.0 0.8
Ave | 09 | 10 | 11 [ 07 | 31 | 14 | 05 | 10 | 14 | 13 | 09 | 11
T: Cactus2: BasketballDrive3: BQMall 4: BasketballDrill

0.4

% 5 10 15 % 5 10 15 If AC. — 0, then (5) can be obtained. Here, Table Il reports
Decoding complexity reduction (%) Decoding complexity reduction (%) AC’e of decoding several videos at QP = 22 27 32 and
(a) Disabling DF (b) Simplifying MC 37. Note that the settings for decoding are the same as the

Fig. 2. MSE versus complexity reduction by (a) disabling Diftd &ab) experiments of SeCtiO_n V. As can be seen from Tabl? I,
simplifying MC for different sequences at QP = 22. Other Qhsehsimilar almost all average\C. is less than 1.5%. Thus, we can find

results. _The settings for decoding are the same as the mees of Section AC, — 0, and this verifies Observation 1. |
V. The figures are obtained by setting (4) = 1 and (b)g» = 3 for some Ob ¢ 2 A me that AS and
randomly selected CTUs, and settifig = 0 and g,, = 0 for other CTUs. servation <. Ssu D (fnswn)

ASn(gn,w,) are the SW-MSEs of disabling DF and

_ . simplifying MC, respectively. They are almost independent
Then, we follow [40] to Welght the MSE of each CTU USlnquth each other. Mathematica”y it holds for

its saliency value. Assuming that there are in tatalCTUs

at a video frame, the Saliency Weighted MSE (SW-MSE) of - &
this frame is calculated by ;Asn(f"’g"’w”)N;<AsD(f"’w")+A5M(g"’w”))' ™
ASn(fry gn,wn) = ﬁMSE(fn,gn). 3 Analysis 2:For (7), the error rate of SW-MSE can be
n=1 measured:

In (3), MSE f,, g») is the MSE between CTUs decoded by

original HEVC and by HEVC with our appraoch (when the ‘ZLAS"(LL,gn,wn)f 5:1(ASD(fmwn)+ASM(gmwn))
parameters arg, andg,). Note that there existdS,(f, = Ase:’ N NS (o s 0m)

0,9, = 0,w,) = 0, due to the fact that CTUs decoded by

original HEVC are the same as those by our approach withjf A5, —; 0, (7) can be acquired. Table Il tabulatass, of

fn = 0 andg, = 0. In the following, we focus on minimizing decoding several videos at different QPs. Note that thengstt

the SW-MSE when reducing decoding complexity. This Wayre the same as the experiments of Section V. We can see from

-(8)

the Quality of Experience (QOE) can be ensured. Table 1Il that most of averagA S, is less than 2.5%. Thus,
. we can conclude thahS, — 0, and this verifies Observation
C. Formulation for SGCC approach 2 n

Our SGCC approach aims at controlling the reduction Upon above two Observations, formulation (4) can be turned
of decoding complexity to the target, meanwhile minimizto

ing perceptual quality loss (in terms of SW-MSE). Here, N

AS, (frs gn, wn) adAC, (fn, gn, wy,) are the SW-MSE and min_ Y (ASD(fmwn) + AS]M(grhwn))
complexity reduction of the-th CTU in a frame ACr is the {fnsan}i 2] ©)
target of complexity reduction. The optimization formudet N

of SGCC can be expressed by s 21 (ACD(fmw") + ACM(QM“’")) 2 ACr.

N N
min ZASn(fmgmwn) sit. ZACn(fmgmwn)ZACﬂ Next, we move to learn the functions ahCp(f,,ws),
{fna9n}3an =1 n=1 AC N (gn,wn), ASD(fn, wn) and ASy (gn, ws), for solving

. . ) our SGCC formulation.
where N is the total number of CTUs in a frame.

Next, we discuss how to decompoAe&”,, ( f,, gn, wy,) and
ASy,(fn, gn, wn) inour SGCC approach, which is the first step .
to solve the SGCC formulation of (4). For the decompositiody. Relationship modelling foASH (fr, wn), ASar(gn, wy)

Observation 1: ACp(f,,w,) and ACy (gn,wy,) are AS1(gn,w,) can be represented by
almost independent with each other. Mathematically, idkol

RELATIONSHIP MODELLING FORSGCCAPPROACH

for ASD(fnywn) = ——MSEp (f),
N N Zn;l Wn (10)
D ACw(frrgniwn) =Y (ACD(fn, wn)+ACM (gn, wn))- () ASn(gn, wn) = =x———MSEwm (gn).
n=1 n=1 n=1 Wn

Analysis 1:For (5), the error rate of complexity reductionin (10), MSE(f,,) is defined as the MSE between CTUs,
can be measured: decoded by our approach with, € {0,1} and by original

|z£Y:1Acn< o g L@CD( fmw”)wa(gmwn))‘ HEVC (ie., f, = 0). Similarly, MSEy(g.) is the MSE
AC,.= VR ) .6) between the CTUs decoded by our approach with €
n=1 nJn;dn, Wn ’

{0,1,2,3} and by original HEVC (i.e.g, = 0).




TABLE Il

o 1
o
VALUES OF ERROR RATEA S, (%) FOR ALL TRAINING SEQUENCES L‘o . R-Square = 0.9980
Fn=1gn =1 Fn=1gn=2 fn=19n =3 o
QP 22 27 32 37 22 27 32 37 22 27 32 37 2 06
1 1.6 2.6 3.5 5.1 1.0 1.3 1.6 2.6 0.0 0.4 0.7 1.0 =
2 2.1 2.8 3.8 3.1 0.7 1.2 1.6 2.1 0.1 0.4 0.8 1.2 :~04
3 0.6 1.7 2.5 4.3 0.3 0.8 1.1 1.9 0.1 0.4 0.7 1.3 3\ :
4 0.8 1.6 2.2 3.1 0.4 1.2 1.6 2.3 0.1 0.5 0.7 1.0 m‘é 0
Ave | 13 | 21 | 30 | 39 [ 06 | 11 ] 15 | 22 | 01 | 04 | 07 | 11 502
T Cactus2: BasketballDrive3: BQMall 4: BasketballDrill = 0
0 1 2 3
g
Sy
MSEns (gn)

It is intractable to model MSE(f,) and MSEy(g,) of Fig- 3. Fitting curve for modellinggsg "X ™55

(10), since they vary MhstégD?}Z) ac;(:]zsu:nd?/gagt()gr]})ent._ Hov\‘/’\?herell denotes the sample set of tlhéh training CTU,
M

ever, we can Useu,gsg 7 =1y SEv(9.=3) " andL is the total CTU number in the training sequené.
stead ofw,MSEp(f,) and w,MSEy(g,), respectively, S- is the number of samples in theth training CTU, andg

ince their correlation is rather high. Spe_cifically, we e jonotes the proportion of its samples with MC skipped. Given

the Spearman Rank CMoSrErel(?U)on Coefiicient (SRCC) betwegft; {MSE},(g)}2,_, can be obtained for each training
-D n n=—

wpMSEp (fn) andwy, gsg-c7; =y @mong all CTUs for each goqence at one QP. Afterwards, MSE,,) is normalized

,=1) .

frame. The SRCC averaged over all frames of four traini MS:EM(gi)( . Based on the samples SEM(gi)[ for
e MSE}, (9n=3) SE;, (9n=3)
a

q
sequences is 0.92. Similarly, the averaged SRCC betw Intralnmg sequences at four QPs, we utlize the least-

w,MSExr(g,) andw, gaserlon) js 0.70. Consequently, on

. SEar (9n,=3) . ! re fitting of the third-order polynomial regressionear
the basis of (10), the norﬂr%%llzatlon can be written by S(r:\l/l%gMe(gnt)t g of the third-order polynomial regressionetarn
MSEp (gn=3) "
A (fo w0) = ASD(fn, wn) —w MSEp (f») (11) Tﬁegfitting curve is shO\{yn in Fig. 3, each dot of which
DA ) = NS (fa=1,wn=1)  "MSEp(fn=1) indicates a pair ofg,,, %@“@3)) for a training sequence
: MSE3, (9.)
and atMsErJe( Q)P. ObwouslyWIgfza =1 for g, = 3 and
1 \9n _ _ — —

At (g, ) = ASu(gnwn) - MSEw(gn) 7 WSE: (7,=5) — 0 for g» = 0, due to MSE,(g, = 0) = 0.

ASr(gn=3,wn=1) MSE}M(gn:S)(lZ) The IR-square value of the fitting in Fig. 3 is 0.9980, verifyin

the effectiveness of the fitting model. Finally, the learnt

sincew, =1, f, =1 andg,, = 3 make SW-MSE largest in polynomial function is as follows,

HEVC decoding. Recall that,, of each CTU can be obtained

using the saliency detection method of [31]. Thus, we focus _MSBailgn) s 2 s g, (16)
on estimatingM“é'EE’(J]Efl)l) and M"é';f{”(f;f”:'g) for ASp(fu,wn) MSEw (g = 3)
and AS,, (G, Wy where the values of;, ho and hs are presented in Table IV.
First, we deal with the estimation qgés=2{/2). Obvious- Consequently, (12) can be turned to
lyv if fn =1, we have%% =1 1If fn = 0, DF is A§A1(9n7wn) = Wn - (hl : gg + ha - grQL + hs - gn)~ (17)
SEp(fn)  _
enablgd such _that we ha\,f\(,gED’Z’T:D = 0. Therefore, the _ _ _
following function holds, B. Relationship Modelling foACp (f,,, w,)
MSEp (f) 0, it fo=0, Now, we move to the modelling oACp (f,,, w,). Obvi-
NSEp(fn = 1) Z{L it £ 1. (13)  ously, we haveACp(f, = 0,w,) = 0, as the decoding
_ complexity is not reduced when DF is enablgd & 0) for the
Based on (11) and (13), we can obtain n-th CTU. Next, we provide a way to leathkC'p (f,, = 1, wy,).
ASD(fuy ) = W+ fi. (14) For learningAChH(f, = 1,w,), four training sequences

at four QPs are decoded with DF enabled and disabled,

Second, we discuss on learni EEAE,(gn)d from some respectively. Then, for thé-th training CTU, the training
! M (gn=:

training sequences. Four sequences, selected from JCT-8RMPIeACT(fi = 1,w;) can be calculated as the percentage
database [39], are used for training, including 190 x 1080  ©f complexity reduction of a frame, after disabling the DF of
sequence€actusand BasketballDrivefrom Class B, as well thel-th training CTU. Herey, is the saliency values of the
as two832 x 480 sequenceBQMall andBasketballDrillfrom  {-th training CTU.
Class C. The sequences are compressed by HM 16.0 at foufVe apply the least-square fitting of the linear regression
different QPs, i.e., QP = 22, 27, 32 and 37. All settings at@ estimate ACp(f, = 1,wy) using the training data
the same as those in Section V. AC%H(fi = 1,w;). The fitting curves are plotted in Fig. 4.
Four training sequences (at QP = 22, 27, 32 and 37) a?1c€ACD(fn = 1, w,) is the decoding complexity reduction
decoded with MC skipped fob, 1, 2 and 3 samples among ©f @ frame caused by disabling DF of theth CTU in this
each four samples, correspondinggio= 0, 1,2, 3. As such, frame (i.e.,f, = 1), its value is also mfluen.ced.by the total
0, 1/4, 1/2 and3/4 of total samples are skipped for MC inn_umber of CTUs in a frame. qu example, in h|gh resolut|o_n
each training CTU. Accordingly, for a training sequence thvideos, DF of one CTU occupies less decoding complexity

MSE caused by skipping MC can be estimated by proportion of the whole frame, than that in lower resolution
videos. Such influence can be removed by multiplyigand

L 2 - B . .
. 1 | =gn) —| =0 the function of NACp(f,, = 1,w,,) for different resolutions
MSE]\/I(gn) — z Z H l(gl g ) l(gl )”2 (15) D(fL L)
=1

P, ’ can be at the same scale and then trained together. Fongaini
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Fig. 4. Fitting curves ofv, VersusNACp(fn =1, wn). Fig. 6. Fitting curves ofy, versusNAC;(g»). Each dot indicates a pair

of (gn, NAC},(gn)) Whereg,, € {0,1,2,3}.

for each possible value of,. Recall thatL is the total
number of CTUs on the training sequences. Then, we have

. . "~ 3 —_
% o2z 04 06 08 1 AC%,(gn) for each training sequence at a specific QP. For
_ _ W each case of a possible QP value (22, 27, 32 and 37),
Fig. 5. Pairs of NAC}, (91 = 1, wy) versusw for QP = 32. the least-square fitting of the linear regression is applied

NACH(fn = 1,w,), NACH(fi = 1,uw;) of 3,000 randomly " all training dataN'AC?3, (g,) of four training sequences.

chosen CTUs are Used as training samples, and each dot in Filla" With modelling AC (f,, wn), we use NACT, (g,)
4 stands for one sample 6, NAC (fy — 1, uy)). Here, the @0er thanACT,(g,) here to make the regression general

configurations of the encoder and decoder for training age tfp" different resolutions. The fitting curves are plottedrig.
same as those in experiments of Section V-A. Consequenﬁ' Accordingly, the function oAC(gx) is obtained in the
the function of ACp (f, wy) is llowing,

1
ACum(gn) = N €9 (20)

ACD (fas ) = 3¢ + (@ wn +) - o, (1)
where the values of at different QPs are presented in Table

where the \_/alues of andb at different QPs are presented iny,. Finally, ACy/(g») can be modelled. It is worth pointing
Table IV. Finally, ACp(fn, w,) can be modelled. out that the training sequences are encoded by hierarchical
C. Relationship Modelling foAC (gn, wn) GOP structure, and the frame-level QP has the offset of
Similarly, in order to modelAC(gy,w,), four training 0 ~ +4 (encoderrandomaccessnain.cfg. For example,
sequences at four QPs are decoded with MC skipped, for2 ~ when setting QP = 22, its frame-level QP ranges from 22 to
and3 samples among each four samples (igg.= 0,1,2,3). 26. Therefore, in our SGCC approach, the trained parameters
The decoding complexity of each CTU is recorded for afl,b andc for QP = 22 are to be applied for frames with QP
training sequences. Then, we defiteC, (g, w;) as the ranging from 22 to 26. Similar setting holds for QP = 27, 32
percentage of complexity reduction of a frame, caused Bjd 37.
skipping MC of thel-th training CTU.
In Fig. 5, we plot the pairs ofNAC}, (g1 = 1,w;)  IV. SOLUTION TO SGCCOPTIMIZATION FORMULATION
and w;, when decoding.four_ trqining sequences at .QP ~In this section, we concentrate on solving our SGCC
32. Note *that the dots in this figure indicate the pairs cFI)rmuIation of (9), to achieve complexity control of HEVC
(wi, NAC}, (9 = 1,wy) for 3,000 randomly selected C-.I—U.S’decoding. Since Fig. 2 has shown that the loss of MSE caused
with the same training configuration as Section 1l1I-B. Sanil by disabling DF is significantly less than that by simplifgin
results can be found for other values @f or other QPs. MC, there exiStsASp (o, wn) < ASar(gn, wn). Therefore
Generally speaking, this figure indicates tel’y, (g1, w) IS 4,75, sgec approacﬁ: we do not sirgi)lifgl/ MC when the
g\deApgndent Ofvy. Therefore ACu (gn, wn) can be replaced target complexityACr can be achieved by only disabling
ypCulon). Y learming | e DF e, ACr < SV ACh(fy = Luw,)). The MC is
Next, we modelAC, (gn) by leamning from training data o, isied only if ACY cannot be satisfied by disabling DF,
of {ACY (91 = gn)lgn = 0,1,2,3}. Sometimes, the CTU e, ACr > SN ACH(fn = 1,wn). As such, we can
number in each training video may be dramatigally Gliﬁe’renltev.\;rite (9) of oJrﬂSGCC fgrmula’tioﬁ és (21). M’oreover, as
such that t.h? mo_delmg ORC (gn, wn) may bias _toward shown in (21), the perceptual quality loss is minimized by th
some of training video sequences. To avoid such bias, we Coapr}imization term. in which the DE and MC of non-salient
e_stimate the averaged complexity reduction of each trgini?:TUS are disable,d/simplified in priority.
video sequence by As discussed in Section llI-A, we replac®Sp(fn, wn)
— 1<, and ASy;(gn,wn) of (21) by their normalized functions
AC(gn) = L ZACM(gl = gn); (19) ASD(fa, ugn) andASy (g, wn). Then, given the relationship

=1



Target
TABLE IV Complexity

PARAMETERS IN RELATIONSHIP MODELLING FOR OURSGCCAPPROACH

QP=22] QP=27] QP =32 QP =37 ;
i s o compeiycomr | I
o | 03041 | 0.3874 | 04101 | 0.4347 HEVC Decoding fa=1] |fa
b | 00255 | 0.0433 | 0.0459 | 0.0576 sk :n o L [Deblocking 530
c 0.0351 0.0520 0.0665 0.0792 Decoding |~ [Inverse Transform| gnf Filter Filter o ctted

Video

Motion
Compensation|

of (14), (17), (18) and (20), formulation (21) can be finally
turned to (22), wherdC. = ACr — YN | L (a-w, +b).

Given the above equations, we onIy need to solve (224Y. 7. Framework of our SGCC approach.

when the target complexnxACT = Zn 1 N (@ - wn +b). Consequently, the optimal solution to (22-a) can be obthine
When ACy > anl ~ - (a-w, +b), we need to solve (22- 44

b) with DF of all CTUs disabled. Once (22-a) and (22-b) are o= 1, Wy < Wy (26)
solved, the decoding complexity of HEVC can be reduced to "o, otherwise

the target by our SGCC approach, as summarized in Fig. 7. ARerel satisfies

seen from this figure, before decoding each CTU, our SGCC

approach decides how to simplify MC and whether to enable < Z 0 T +b)>ACr > — Z a-T+b).  (27)

DF, without any change on the CTU-level decoding pipeline.
Next, we discuss how to solve (22-a) and (22-b), respegtive}, . sgcc approach, the solution bfto (27) is searched

A. Solution to formulation (22-a)

First, we aim at fmdmg optimal solutioR = {f,,}_, of
(22-a). First, let{w, } .

, be the set of the ascending sortedntil its sum is> N - ACr. Once the suny_,_

by the following way. For each frame,- w,, + b is calculated
starting fromn = 1, and then added up fcn =1,2,...,1
1(a-w, +b)

{w,}N_,. Given {wn}n 1, Lemma 3 can be used for finding= IV - ACT, a suitablel can be found out.

the optimal solution to (22-a).

Lemma 3: Leta > 0, b > 0,1 > 0 andw,, € [0,1].
Assume thafF = {f,}_, satisfies

_ 1, wyn < Wy 23

Jn = 0, otherwise (23)

where w; is the I-th value of ascending sorte@wn}n 1-
Assume thaf = {f,}Y_, is another set withy, € {0,1}.
If

N

N
Z (a-wn+0b)- Z (a-wn +b) - f'rln (24)
n=1 n=1
then the following inequality holds
N N ,
n=1 n=1

Proof 3: The proof for Lemma 3 is in Appendix A. B
According to Lemma 3, if and only ifv, < w;, f, =1is
the optimal solution to (22 a). In order to mwm@@f 1 Wn
fn at the constraint oizn 1 N(a wy, +0) - fn > ACT,

SN | A(a-w,+b)- f,, should be as close thCr as possible.

B. Solution to formulation (22-b)

Next, we discuss on the solution to formulation (22-b). t-irs
(22-b) can be simplified by Lemma 4.

Lemma 4: The nonlinear integer programming (22-b)
is equivalent to the linear integer programming problem as
follows,

N3 N3+Na N3+No+Ny
an-f—z (8h1+4ha+2hs) wn+Z hi+ha+hs)-w

n=1 n=NzH+l n=Ng+No+1

C- (N1+2N2+3N3) > ACT

mln
N3,N3,N.

st &
(28)
In (28), N1, N2 and N3 are the numbers of CTUs corre-
sponding tog, = 1,2 and 3 in a frame, and they satisfy
Ny + Ny + N3 < N.
Proof 4: The proof for Lemma 4 is in Appendix B. B
According to Lemma 4, the optimal solution to (22-b) can
be obtained, once the formulation of (28) is worked out. In
fact, (28) is a linear programming problem, which can be
solved by the branch-and-bound algorithm [41]. Howeve, th

N N
min ZASD fru,wn) St Z D (frywn) > ACT, if ACr <> ACh(fa=1,wn),
{fn}w n n=1 n=
1 N1 N N I\} (21)
min Y " ASu(gn,wn) St ZAC’M gn) = ACT = > ACD(fo = Liw,), if ACr > ACh(fn=1,wn).
{QW}TL 1n=1 n=1 n=1 n=1
N N
min an fn Z (a-wn +b)- fn>ACr, if ACr Z (a-wn, +b), (@)
{fn}n n—= n=1 n=1
e (22)
N 1 , N
{qin}l,{l lnzzlw (hi-g2 4+ ha- g+ hs - gn) ;N c-g Cr, if ACr > Z:: N (a-wn+0b), (b)
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computational Complexity of the solution is still €eNormoEU-ig. 10. Averaged propagation error of each frame at QP = 8286 =
especially for large CTU numbelN in a frame with high 20%, in terms PSNR reduction, along with Picture Order Count@PO

resolution. It is because the branch-and-bound algoritam h
to be carried out to solve (28) for each frame. Next, we fU”h?bIIowing observations that the hierarchical coding stuue of

simplify (28) to reduce its computational complexity. HEVC can significantly alleviate the error propagation irr ou
Proposition 5: w, is of almost uniform distribution as sGCcc approach. Here, for analysis, we use the hierarchical
follows, N, GOP structure of the default HM Random Access (RA)
YN, € {n},, Z@" ~k- N2 (29) with_encodeLrandomacces_main.cfgfile, as shown in Fig.
el 9. Similar results can be found for other GOP structure.
wherek is a positive constant. Observation 6: _The quality loss _of I frame_s does not in_cur
Proof 5: The proof for Proposition 5 is in Appendix Gl &nY €rror propagation, when reducing decoding complexity b
Based on Proposition 5, (28) can be rewritten by our SGCC approach. . o
' ) , , Analysis 6:The reconstruction of I-frames is independent
i Ny o+ (8ha + dha + 2hs) - (N2 + Ns)™ — N3) of other frames, and thus the quality loss of other frames has

+(h1 + ha + hs) - (N1 + Na + N3)® — (N2 + Ns)?)  (30) MO impact on each decoded | frames. We further tested the
1 , error propagation of two neighboring | frames and four GOP
st et (N1 42N2 +3Ns) > ACT. between them (from frame 32 to frame 64), averaged over

Note thatk is a constant which is independent of the minilCUr raining sequences. Here, the error propagation ofthe

mization problem in (30), and thus can be simply removed th frame is calculated a; follows. First, we only apply our
from the minimization formulation. SGCC approach on framg and do not make any complexity
Next, we apply the branch-and-bound algorithm [41] t{)eduction on other frame_s. Then, the quality of ikl frame
solve (30), and it only needs to be solved once befol® €valuated by Y-PSNR in dB. For the anchor, we apply our
decoding. We establish a table for the solutions to (30) ai°CC approach on all frames, and also measure the quality
each specific\C... Then, givenAC,., we can simply obtain of the i-th fra_me by Y-PSNR. Finally, the dlfferer_me of apove
Ny, N and N, by table look-up. This way, the overhead ofwo PSNRs is calculate_d as the error prop_agatlon at frame
computational complexity on solving (22-b) can be avoided! € results are shown in Fig. 10, and we find that the PSNR
An example of{ f,}Y_, and{g,}~_, solved by our SGCC reduction of each | frame is O dB.

n=1 n=1 . . .
approach is shown in Fig. 8-(c) and (d). As can be seen , |argep\dd|tlonally, the quality loss of | frames does not incur any

£, o g, corresponds to smaller,,, which is the saliency €'TO" Propagation within the frame for our SGCC approach,

value as illustrated in Fig. 8-(b). The detected saliencypmg2S Only intra prediction mode is applied in | frames. In the
shown in Fig. 8-(b), tallies well with the groundtruth, j.¢he I-frames decoding, the DF is implemented in every frame

fixation map in Fig. 8-(a). As a result, the decoding compijexi after the reconstruction (intra prediction, etc.) of theokeh

of CTUs in non-ROI is reduced in high priority, and th(z_frame [1]. Thus, the quality degradation caused by disgblin

quality of ROI (e.g., face) rarely degrades. This indicatest DF cannot propagate through intra prediction among CTUs.

the perceptual quality loss can be minimized in applying OlIf,urthermore, since MC is only related to inter frame predic-

SGCC approach. tion, thg error cannot propggate within | frame. This cortgsde
. ) the validation of Observation 6.
C. Error propagation analysis Observation 7: The quality loss of B or P frames incurs

The quality loss of each decoded frame, which is caused $yall error propagation due to the hierarchical codingcstme
the above complexity control, may propagate to other frame#sHEVC, when reducing decoding complexity by our SGCC
predicted by this frame. Hence, it is nhecessary to analyee twpproach.
error propagation across decoded frames. We find through thénalysis 7:In B or P frames, because of inter prediction,



the quality degradation of the reference frames is possible TABLE VI

propagate to the currently decoded frame. Thus, error gapa COMPLEXITY OVERHEAD OF OURSGCCAPPROACH PER FRAME

tion (_exists in B or P frames. However, the error propagaﬁao_n i Calculating {w,, ], | Sohing (22.a)| (22.b) | Total

restricted to be small by the hierarchical GOP structunestfi [ 1600p 0.119 ms 0.025 ms - 0.144 ms

each | frame does not incur any error propagation as poin eéﬁ)op 8-8?2 ms 8-83; ms - 8-8;33 ms
. e ~ P . ms . ms - . ms

out by Obseryatlon _6. In ad_dmon, I frame_s do_ not have M( 240p 0.003 TS 0.001Tms . 0,002 TS

such that their quality loss is only from disabling DF, which

is significantly lower than that of simplifying MC (see Fig

2). A I | f h i fB .
). As a result, after | frames, the error propagation o ly for reading the value®v;, N, and N3 from the table,

P frames terminates, and their quality loss is resumed to X . . L .
q y according to giverACr. Such computational time is too little

small. Second, although the B or P frames, especially ind'rigr} b d1 the total lexit head of
layers or far from | frames, suffer from error propagationO € measured. In summary, the total complexity overnead o

the reference frames at different layers of hierarchicdirog decoding complexity control for 1080p sequences is 0.069 ms

structure ensure (see Fig. 9) that each decoded framep%\;éa?:éoghr:(:hF'zrv(;:]ye:'trtée ocloinoaareqr;c')la?ioi:d {\S;I:o:]n
predicted by several frames. Specifically, all frames of tﬂ_é INg. G solutions, simi pu
plme can be found in Table VI.

first GOP after | frames are all predicted by | frames, whic :
has little quality loss. Then, for the second GOP all fram SNote that when applying our SGCC approach to the HEVC

have the reference frame directly predicted by | frameshsu itstreams with other configurations, the parameters irleTab
that the shortest prediction path to | frames is one frame. T Imay geted bto bet r(_a—trgmed. '1')0\:(\'8\/6“ thle.se Eﬁ ragGetg(r:s
shortest prediction path to | frames is two frames for thedthi O Need 1o be re-trained once betore applying the

GOP, and so on. Note that the error propagation of the fram roach to the HEVC decoder. Consequently, re-training

of the GOP before an | frame can be reduced to be smaII,t g parameters only introduces off-line computation_aleti_m
they are also predicted by the incoming | frame. Therefare, verhead, and does not consume any HEVC decoding time.

the hierarchical coding structure of HEVC, there existslkm n our SGCC approach, training a new set of pa}ramet_ers
error propagation for the quality loss of B/P frames. consumes around 297.40 s overhead of computational time
In addition, Fig. 10 shows the error propagation of all g off-line manner.
frames between two neighboring frames averaged over four
training sequences, wheACr = 20% and QP = 32. As V. EXPERIMENTAL RESULTS
shown, the averaged error propagation of B frames is onlyin this section, experimental results are presented toatali
0.19 dB. Thereby, we can conclude that the error propagatigie effectiveness of our SGCC approach, in comparison with
of quality loss for B or P frames is rather small. Finally, théhe latest HEVC decoding complexity reduction approaches
analysis of Observation 7 is completed. [23] and [24].
Note that when applying our SGCC approach, | frames .
should be inserted to terminate error propagation, acogrd™ S€ttings
to Observation 6. In this paper, the period between | framesAll 15 sequences of Classes A-D (except 10-bit sequences)
is set as 32 for training and test sequences, according to them the JCT-VC database [39] were divided into non-
default configuration oéncoderrandomaccessnain.cfg overlapping training and test sets. Four sequences were se-
lected as the training set to learn the relationship of 8acti
lll. Then, we tested our approach on the remaining sequences
Finally, we analyze the complexity overhead in applying ouncluding two 2560 x 1600 sequencedraffic and PeopleOn-
SGCC approach. The complexity overhead of our SGCC aptreetfrom Class A, threel920 x 1080 sequence&imonqg
proach includes calculatinfw,, }, computation on (22-a) and ParkSceneand BQTerrace from Class B, two832 x 480
(22-b). Their computational time is evaluated and repoitted sequenceRaceHorsesandPartyScendérom Class C, and four
Table VI. Note that the functioQueryPerformanceCountg@r 416 x 240 sequenceRaceHorsesBQSquareBlowingBubbles
in Visual C++ was used to record the computational time. Ttend BasketballPas$rom Class D. First, all tested sequences
experiment was performed on a Windows PC with Inter(Ryere encoded by the HM 16.0 encoder. Here, the configuration
Core(TM) i7-4790K CPU. of RA was implemented with GOP size being 8. Four common
It can be seen from Table VI that the complexity overhea@Ps, i.e., 22, 27, 32 and 37, were chosen to encode the
of our SGCC approach is rather small. In particular, calctest sequences. All other parameters were set by default in
lating saliency value§w,} consumes averagely 0.058 mghe encoder, using thencoderrandomaccessnain.cfgfile.
per 1080p frame. When calculating (22-a), saliency valuBgsides, HM 16.0 with its default settings was also utilized
{w,}N_, need to be sorted aéw,}_, by the quicksort as the decoder. In our experiments, our SGCC approach is
algorithm, which averagely consumes 0.010 ms per 1080pplemented in the HM platform, the same as most of exist-
frame. Besides, computingin (27) consumes averagely 0.001ing HEVC complexity reduction works [5]-[10]. Compared
ms per frame for 1080p videos for solving (22-a). For solvinp encoding, HM is more practical in decoding, since our
(22)-b, as mentioned in Section IV-B, we establish a look-ugxperiments found that it is able to achieve real-time dagpd
table for the solutions to (22)-b, and we can simply obtaifor 1080p videos at 24 fps and QP = 37 on a Windows PC
the solution by the table look-up, when decoding HEV@ith Inter(R) Core(TM) i7-4790K CPU.

;prjtstreams. Therefore, the computational time of (22)-b is

D. Complexity overhead analysis
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TABLE V
INDIVIDUAL MAR CONTRIBUTIONS(%) OF DF DISABLING AND MC SIMPLIFICATION.

MAR of QP = 22 MAR of QP = 27 MAR of QP = 32 MAR of QP = 37
Classes Sequences DF MC SGCC DF MC SGCC DF MC SGCC DF MC SGCC
A Traffic | 13.98 | 19.20 | 33.18 | 14.67 | 25.12 | 39.79 | 14.93 | 27.03 | 41.96 | 14.45 | 30.19 | 44.64

PeopleOnStreetff 15.57 9.60 2517 | 1958 | 1155 | 31.13 | 21.78 | 1263 | 34.41 | 20.61 | 1791 | 38.52
Kimono | 12.90 | 15.35 | 28.25 | 14.18 | 22,93 | 37.11 | 14.49 | 25.71 | 40.20 | 10.80 | 31.07 | 41.87

B ParkScene| 13.47 | 17.12 | 30.59 | 14.33 | 2247 | 36.80 | 14.89 | 25.21 | 40.10 | 11.55 | 32.39 | 43.94
BQTerrace | 10.98 | 12.66 | 23.64 | 16.18 | 19.84 | 36.02 | 16.14 | 25.88 | 42.02 | 12.83 | 32.40 | 45.23

RaceHorses| 12.54 6.29 18.83 | 1592 | 11.03 | 26.95 | 15.30 | 16.56 | 31.86 | 16.46 | 17.93 | 34.39
PartyScene| 10.67 9.71 20.38 | 15.81 | 13.28 | 29.09 | 1428 | 20.73 | 35.01 | 11.27 | 26.74 | 38.01

RaceHorses| 13.19 8.45 2164 | 16.38 | 10.08 | 26.46 | 18.76 | 10.77 | 29.53 | 16.78 | 17.97 | 34.75
D BQSquare| 10.72 | 14.60 | 25.32 | 12.36 | 20.49 | 32.85 | 13.70 | 2355 | 37.25 | 12.48 | 28.34 | 40.82
BlowingBubbles| 10.62 | 12.85 | 23.47 | 1261 | 16.47 | 29.08 | 14.02 | 18.68 | 32.70 | 15.36 | 21.50 | 36.86
BasketballPass| 12.94 | 10.21 | 2315 | 1598 | 1251 | 28.49 | 17.73 | 13.78 | 31.51 | 1512 | 20.41 | 35.53

Average 12.51 | 12.37 | 24.87 | 15.27 | 16.89 | 32.16 | 16.00 | 20.05 | 36.05 | 14.34 | 25.17 | 39.51

W
(=3

; ; ; ‘ the mean and standard deviation are calculated over all 11
Escee { | test sequences at QP = 22, 27, 32 and 37. We can see from

40 %Eﬂ Fig. 11 that the MARs of our approach are much larger than

those of [23] and [24]. Specifically, the averaged MARs of our
approach ar@4.9%, 32.2%, 36.0% and39.5%, corresponding
to QP =22, 27, 32 and 37. By contrast, the averaged MARs of
ﬂ , [24] only reachl8.4%, 21.2%, 23.0% and23.4% for QP = 22,

(5%
(=3
T

[
f=3
T

S
‘

27, 32 and 37. Unfortunately, [23] obtains even less MARs.
QP —22 QP —27 QP —32 QP —37 We can also see from Fig. 11 th:_;lt Ia_rger MAR can be _achieyed
Fig. 11. Mean and standard deviation of MARs for our SGCC] 81 [24] in our SGCC approach, alongside increased QP. It is mainly
approaches. ) due to the fact that small QP leads to much more coding
‘The experiments were all performed on a Windows Pfs making entropy decoding consume higher complexity.
with Inter(R) Core(TM) i7-4790K CPU and 32G RAM. TO o ever, even in the worst case of QP = 22, our approach
evaluate \{lsual q.uallty, both Y—PSNR differencBRSNR) and |,2594 9% MAR in average, whereas the MARs of [23] and
Eye-tracking Weighted Y-PSNR differencAEW-PSNR) [42] [24] are 14.4% and 18.4%, respectively.
are assessed. Here, Y-PSNR and EW-PSNR are calculate able V reports the individual contributions of DF disalglin

upon the raw and decoded sequences. ThERSNR and T
AEW-PSNR quantify the PSNR and EW-PSNR degradatioff’ M SimPiTication in teims of MAR. 1 can be seen
when decoding sequences by HEVC with our SGCC, [2%’:]e 9 9ely

and [24] approaches, instead of the original HEVC decoder coding complexity byl2.5%, 15.3%, 16.0% and 14.3%,

- corresponding to QP = 22, 27, 32 and 37, respectively. MC
As such, the smalleAPSNR andAEW-PSNR indicate better ~" ="~ == .
performance in quality loss. In calculatinyEW-PSNR, we simplification is able to further achievie.4%, 16.9%, 20.0%

utilize human fixation maps from eye-tracking experiment t%nd25'2% complexity reduction. As such, the averaged MAR

weight MSE, for fair comparison. In addition, the resulté)f our SGCC approach is able to reazh9%, 32.2%, 36.0%

of the Difference Mean Opinion Score (DMOS) [43] ar and39.5%, respectively, by both disabling DF and simplifying

also measured to assess the subjective quality of decodin%' .
sequences. ontrol error: Next, we move to the evaluation of control

B. Evaluation on control performance error for our SGCC gpproach. Note thqt we do not compare
_ P with [23] and [24] in control error, since [23] and [24]
First of all, we evaluate the control performance of OUWle complexity reduction approaches, rather than contglexi

SGCC approach in HEVC decoding. The performance evalsq) Taple VI reports the control errors of each seqaen

uation consists of two parts: Maximal Achievable Reductio&Cross different complexity reduction targets (LAC; —

(=}

Maximal Achievable Reduction (%)

(MAR) and control error. First, we compare the MAR result%% 20%,30% and 40%), at QP = 22, 27, 32 and 37. We
of our SGCC approach with those of [23] and [24]. Herg,,, see from this table that in our approach the control error
to obtain MAR of our SGCC approach, we sgf = 1 and g 5 197.30%, while most errors are below00%. Table VI

gn = 3 for all the CTUs to achieve the maximal decoding s, tahylates Mean Absolute Error (MAE) and Mean Relative
complexity reduction. Then, we record the ratio of SucError (MRE) for each specificACr, averaged over all 11

reduction as MAR. For [23] and [24], we also make thelfoq; sequences. It is apparent that MAEs of our approach in

complexity reduction reach maximal values using the Waysy st all cases are beldw0%. The only exception is MAE
reported in [23] and [24]. Note that the complexity overhead 3.42%, when ACy is as large asl0%. Indeed, it is also

of our approach (analyzed in Section IV-D), which is far Iesﬁecessary to evaluate MRE at differe€, calculated by
than HEVC decoding complexity, is included for evaluation.

MAR: Fig. 11 demonstrates the mean and standard devi- MAE

ation of MARs for our and conventional approaches. Here, MRE = N 100%, (31)
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TABLE VII
COMPLEXITY CONTROL ERROR OF OURSGCCAPPROACH
QP =22 QP =27 QP =32 QP =37
ACT (%) ACT (%) ACT (%) ACT (%)
Classes | Sequences 10 20 10 20 30 10 20 30 10 20 30 20
Traffic +2.81 | +4.46 | +0.97 | +3.01 | +7.30 | -0.19 | +0.78 | +4.14 | +0.44 | -0.29 | +2.20 | +4.29
A PeopleOnStreet| +3.06 | -0.02 | +2.10 | +3.20 | +1.13 | +0.83 | +5.06 | +0.89 | +2.34 | +5.48 | +2.12 | -1.72
ParkScene +1.82 | +2.54 | +057 | +2.16 | +7.11 | +0.47 | +0.87 | +3.03 | +1.78 | +0.08 | +2.05 | +3.48
B BQTerrace -1.70 -3.02 | +1.57 | +0.94 | +6.80 | +0.50 | -0.45 | +3.67 | +1.62 | -1.43 | +1.89 | +4.81
Kimono 0.72 | +2.14 | +1.47 | +1.33 | +6.02 | +1.01 | +1.23 | +3.35 | +0.60 | -0.94 | +0.38 | +1.34
RaceHorses +0.39 -3.93 +0.29 -1.14 -3.05 -0.40 +0.83 | -3.83 +3.23 +2.27 | -1.77 -6.09
c PartyScene -1.78 -3.79 121 | 215 | -0.91 | -241 | -1.80 | 263 | 057 | -1.49 | -1.79 | -2.46
RaceHorses -0.52 -3.45 -0.58 -1.26 -3.54 -0.37 1.28 -3.56 +1.74 +2.41 | -1.44 -5.38
BQSquare 2.74 -2.15 331 | -1.20 | +2.85 | -3.14 | -2.40 | -0.14 | -1.91 | -3.22 | -1.40 | +0.24
D BlowingBubbles| -3.31 -3.45 352 | -257 | -0.92 | -314 | 225 | -298 | -1.74 | -237 | -2.82 | -3.20
BasketballPass | -0.69 -2.44 126 | -053 | -1.51 | -1.27 | +0.45 | -277 | +0.15 | +0.96 | -1.83 | -4.56
MAE 1.78 2.85 1.53 1.77 1.94 1.25 1.58 2.82 1.46 1.90 1.79 3.42
MRE 17.78 | 1426 | 15.32 | 8.86 6.45 12.47 | 7.91 9.39 14.60 | 9.50 5.97 8.55
TABLE VI
APSNRAND AEW-PSNR 0B) AT QP = 32AND 22FORSGCC, [23]AND [24].
Class|  Sequence Appr. QP=32,AC7=8% / QP=22,AC1t=5% | QP=32,ACT=18% / QP=22,AC1=15% | QP=32,AC7=23% / QP=22,AC7=20%
: APSNR AEW-PSNR APSNR AEW-PSNR APSNR AEW-PSNR
SGCC| 0.0848/0.0642 0.0634/0.0478 0.2962/ 0.5657 0.2015/ 0.2863 1.0616/ 5.7466 0.5667/ 4.5571
Traffic [23] 0.3401/0.7851 0.4313 / 1.0425 1.0019 /2.2343 1.2724 /2.8351 - - - -
[24] 0.0610/ 0.1213 0.0672 / 0.1507 0.9543 / 2.2104 1.2287 / 2.8138 9.3028 / 13.7660 10.3273 / 15.0217
A SGCC|  0.149570.1236 0.06117 0.0502 0.44297 0.6011 0.41277 0.3580 0.83647 4.9234 0.62397 3.5759
PeopleOnStregt [23] 0.3522 / 0.6946 0.3952 / 0.8403 0.9160 / 1.7966 1.0259 / 2.1468 - - -l -
[24] 0.1135/ 0.1753 0.1232/0.1986 0.8036 / 1.7145 0.9098 / 2.0734 7.6765 / 12.4255 8.2545 / 13.4957
SGCC| 0.0284/ 0.0451 0.0170/ 0.0612 0.4093/ 0.9248 0.3670/ 0.5026 1.0500/ 5.4168 0.72741 4.6220
ParkScene [23] 0.2288 / 0.6820 0.2939/ 0.7777 0.5807 / 1.6772 0.6801 / 1.7581 - - -l -
[24] 0.0413 / 0.1047 0.0721 / 0.1349 0.5559 / 1.6712 0.6263 / 1.7338 6.5633 / 11.1630 6.5933 / 11.4560
SGCC|  0.015270.0203 0.00697 0.0045 0.32367 1.1269 0.06017 0.3316 1.72577 6.9894 0.847176.1868
B BQTerrace [23] 0.4375 / 0.9351 0.4674 / 1.1097 1.2279 / 2.4650 1.2851 / 2.8457 - - -l -
[24] 0.0599 / 0.1783 0.0604 / 0.1936 1.2235 / 2.4526 1.2826 / 2.8342 9.8686 / 13.1676 10.0341 / 13.9260
SGCC|  0.1061 /0.0846 0.05287 0.0604 0.30547 0.3357 0.38827 0.4299 0.45017 2.1454 0.53947 2.0825
Kimono [23] 0.2199 / 0.3527 0.2402 / 0.3845 0.5364 / 0.8965 0.5853 / 0.9659 - - - -
[24] 0.0780/ 0.0901 0.1010 / 0.0993 0.4741/ 0.8571 0.5107 / 0.8993 4.5654 / 7.8190 4.5623 / 7.6625
SGCC| 0.05127 0.0909 0.09077 0.0816 0.3240 0.9005 0.37797 0.8770 0.84827 4.0999 0.85427 3.6421
RaceHorses | [23] 0.3050 / 0.9234 0.3316 / 0.8741 0.7213 / 2.0427 0.8007 / 1.9319 - - - -
[24] 0.0858 / 0.1999 0.0938 / 0.2091 0.6687 / 2.0220 0.7387 / 1.9026 6.3171/11.1323 6.7362 / 11.3829
c SGCC|  0.01687 0.0148 0.00767 0.0063 1.08927 4.1913 0.23517 0.7267 3.41957 9.5478 1.0783/ 6.4582
PartyScene [23] 0.8385 / 2.7252 0.4663 / 1.7229 1.8108 / 5.2526 1.0914 / 3.6297 - - - -
[24] 0.1147 / 0.4213 0.0762 / 0.2541 1.8182 / 5.2595 1.0728 / 3.6390 9.1921 / 15.2457 7.6641 / 13.9324
SGCC| 0.07837 0.0542 0.06347 0.0574 0.2969/ 1.6244 0.2432/0.7723 0.8350/ 6.7330 0.7986/ 6.5464
RaceHorses | [23] 0.3312/ 1.1740 0.3912 / 1.4015 0.7623 / 2.5856 0.8941/2.9178 - - - -
[24] 0.0785 / 0.1935 0.0831 / 0.2079 0.7108 / 2.5802 0.8303 / 2.8968 6.8314 / 13.1843 7.2170 / 13.5511
SGCC| 0.00107 0.0041 0.00527 0.0039 1.5612/ 6.6972 0.76847 4.0648 5.0606/ 13.8470 3.91657 13.0618
BQSquare [23] 1.4420 / 3.6301 1.2487 / 3.3762 3.0622 / 6.8422 2.7089 / 6.4708 - - - -
[24] 0.1907 / 0.5886 0.1603 / 0.5216 3.0669 / 6.8397 2.7118 / 6.4708 11.9616 / 17.6653 | 11.5873 / 17.5664
D SGCC| 0.018170.0125 0.010170.0144 1.17397 5.3492 0.42007 2.7555 3.28837 11.2444 2.06047 10.0694
BlowingBubbles [23] 0.5719 / 2.0708 0.4786 / 2.0190 1.2774 /14.1821 1.1231 / 4.1169 - - -l -
[24] 0.0639 / 0.2993 0.0527 / 0.2788 1.2869 / 4.1948 1.1302 / 4.1311 8.0493 / 14.1225 7.9817 | 14.4524
SGCC|  0.09457 0.0567 0.05847 0.0332 0.3108/ 1.0316 0.25167 0.3296 0.8332/5.6245 0.55877 4.8829
BasketballPasg [23] 0.3041 / 1.0168 0.3048 / 1.0379 0.7798 / 2.1075 0.7836 / 2.1202 - - - -
[24] 0.0968 / 0.1751 0.0913 / 0.1934 0.7106 / 2.0762 0.7226 / 2.0924 5.5834 / 11.2566 5.3963 / 11.2870
SGCC| 0.0585/ 0.0519 0.03977 0.0383 0.5939/ 2.1226 0.3387/ 1.0395 1.76447 6.9380 1.1428/ 5.9714
Average [23] 0.4883 / 1.3629 0.4590 / 1.3260 1.1524 / 2.9166 1.1137 / 2.8854 - - -l -
[24] 0.0895 / 0.2316 0.0892 / 0.2220 1.1158 / 2.8980 1.0695 / 2.8626 7.8101 / 12.8134 7.8504 / 13.0667

which indicates the proportion of control error with resptec  and AEW-PSNR of our and other conventional approaches,
ACr. We can further see from Table VII that MREs of moswhen ACr = 8%, 18% and 23%*. Due to space limitation,
cases are less thai0%. In a conclusion, our SGCC approacthe results of QP = 22 and 32 are provided in Table VIII.
performs well in control accuracy. Objective quality loss: It can be seen from Table VIII that
Note that whemAC'r is less than the MAR of DF disabling Y-PSNR loss of our SGCC and other approaches increase
(as shown in Table V), HEVC decoding complexity is reducedramatically, when decoding complexity reduction becomes
by only disabling DF of some CTUs. WheACr cannot larger. For example, when decoding complexity reduction
be reached by disabling DF of all the CTUs, the remainirigcreases from 8% to 18% at QP = 32, the averafy@SNR
amount of decoding complexity reduction is contributed byf our SGCC approach enhances from 0.0585dB to 0.5939dB.
MC simplification. Once complexity reduction reaches 23%PSNR of our ap-
proach increases to 1.7644dB. It is because MC simplificatio
of (22-b) brings in larger distortion, in comparison with DF
Now, we compare complexity-distortion performance of
our SGCC approach with conventional approaches [23] andsince [23] and [24] cannot control decoding complexity i, we
[24]. The quality loss caused by decoding complexity revere not able to set complexity reduction targeC'r in [23] and [24].
duction is measured in terms dPSNR andAEW-PSNR. Instead, we first decoded the test sequences with [23] arjd{@d we found
APSNR reflects objective quality loss, whilaEW-PSNR that their complexity reduction is around some specific eslte.g., 5%, 10%

] and 20% at QP = 22, and 8%, 18% and 23% at QP = 32. Then, waGegt
measures perceptual quality loss. Table VIII shaMB8SNR  of our SGCC approach to these values for fair comparison.

C. Evaluation on complexity-distortion performance
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Fig. 12. APSNR andAEW-PSNR versus decoding complexity reduction at QP = 27 @hd 3

disabling of (22-a). It can be further seen from Table VIktth
our SGCC approach significantly outperforms [23] and [2¢ ' e " S8 ‘ <% ‘ S Q‘ )
in terms of APSNR, especially at high complexity reduction i ‘Y « !

Specifically, once decoding complexity reduction increatse
23%, [24] incurs averagely 7.8504dB Y-PSNR loss at QP
32, far more than 1.7644dB of our SGCC approach. Besid:
[23] is incapable of reducing decoding complexity of HEVC

o [-frame
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to 23%. Despite much better than [23] and [24], the objecti ¥ 4th layer :

quality loss of our method is not very small at high comphexit 0 32 % poc % 128
reduction (e.g. APSNR= 1.7644 dB at 23% reduction and g | | |

QP = 32). However, the perceptual quality loss by our metht ' o Lframe

can be alleviated (e.gAEW-PSNR = 1.1428 dB at 23% 2t e

reduction and QP = 32), which is the minimization objectiv I &, Lk i rob

of our SGCC approach. For QP = 22, similar results can | H i T W (PR TAR Y 24

found from Table VIII. S v'y V »
Perceptual quality loss: Table VIII shows that, for all T 1

11 test sequences across three decoding complexity targ | ‘ |

AEW-PSNR of our SGCC approach is less than those of [2 0 32 o 9% 128

and [24]. For example, whethCr = 18% and QP = 32,

averagedAEW-PSNR is 0.3387 dB, 1.1137 dB and 1.0695ig. 13. The frame-leveAPSNR andAEW-PSNR whenACy = 23% and

dB for the SGCC, [23] and [24] approaches. This implie@P = 32.

better perceptual quality achieved by our SGCC approagfss than those of [23] and [24]. Besides, we can observe

Furthermore, the averaged values AEW-PSNR are much ipot AEW-PSNR is less thatnPSNR in our SGCC approach,
less than those aAPSNR in our SGCC approach, while i”indicating better perceptual quality.

[23] and [24] the values cAEW-PSNR are similar to those of
APSNR. For example, the averagAdPSNR of our approach . )
is 0.5939dB at\Cy = 18% and QP = 32, whillAEW-PSNR D. Assessment on fluctuation of quality loss
is averagely 0.3387 dB. In contrast, the averaged values ofNext, we assess the frame-level fluctuation of quality loss
AEW-PSNR andAPSNR are 1.1524 dB and 1.1137dB focaused by our SGCC approach, since the error propagation
[23], and 1.1158 dB and 1.0695 dB for [24], ACT = 18% of our approach may increase the fluctuation of quality loss.
and QP = 32. As shown in Table VIII, our SGCC approachig. 13 plots the objective and perceptual quality loss glon
also performs well in perceptual quality at QP = 22. In with decoded frames ahCr = 23% and QP = 32, averaged
word, the above results verify that our approach is capableaver all 11 test sequences. First, it can be seen that I-Bame
optimizing perceptual quality, when the decoding compiexihave slight quality loss, which incur no error propagation.
of HEVC is reduced. More importantly, the quality loss can be resumed to be near
Complexity-reduction curves: To investigate the quality zero successively after | frames, validating the effectass
loss at varying reduction of decoding complexity, Fig. 1Bf | frames in preventing error propagation of quality loss.
plots the complexity-distortion curves of five selectedt teJhis is in accordance with Observation 6. Second, the qualit
sequences, for our SGCC and other conventional approachiegradation of the frames at the first layer is less than that a
We provide in this figure the complexity-distortion curves oupper layers, within a GOP. As such, the fluctuation of qualit
QP = 27 and 32 to show the generalization of our approaldss can be relieved. This indicates the small error projpamga
at different bit rates. In Fig. 12, the curves for ba’SNR of our approach due to the hierarchical coding structure of
and AEW-PSNR are shown, which reflect the objective andEVC, satisfying Observation 7. Finally, one may see that
perceptual quality loss, respectively. As shown in thisfigu the range ofAEW-PSNR (0.5-1.7 dB) is much smaller than
both APSNR andAEW-PSNR of our SGCC approach arghat of APSNR (1-2.5 dB), for non-I frames. Thus, it verifies

n

A EW-PSNR (dB)

o
i

=)
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TABLE IX
DMOSVALUES AT QP = 320F SGCC, [23]AND [24].

ACT Sequences| 1 2 3 4 5 6 7 8 9 10 11 Average
SGCC 33.35 43.75 | 4241 37.50 | 45.03 53.51 | 41.30 52.06 | 33.20 | 37.07 | 33.05 41.11
8% 23 4079 | 4428 ] 4425 4347 ] 4579 5140 46.20 | 4997 | 37.90 | 41.76 44.70 44.59
24 47.26 | 36.65 4468 | 4527 4769 | 4797 46.88 | 46.07 | 35.07 [ 42.05 41.55 43.74
SGCC 45.98 | 47.23 | 61.06 | 43.33 | 54.81 | 5443 | 55.07 | 60.83 | 63.06 | 64.37 | 48.22 54.40
23% [24] 6571 | 65.07] 5844 | 7011 [ 5750 66.11 | 69.80 | 70.87 ] 68.08 | 72.93] 63.09 66.16
1: Traffic 2: PeopleOnStree3: ParkScenet: BQTerrace5: Kimono6: RaceHorseg832 x 480)

7: PartyScene8: RaceHorseg416 x 240) 9: BQSquarel0: BlowingBubblesl1: BasketballPass

MSE = 0.03 MSE =5.72 MSE =1.31

S

4R

MSE = 0.75

Fixation ap

MSE = 0.27

(a) Subjective quality at A Cr= 8%, QP =32

MSE =12.8 MSE =5.7 MSE 323 4

Fixation map

(b) Subjective quality at A Cr=23%, QP =32
Fig. 14. Subjective quality of four selected frames decobgdHEVC with our SGCC, [23] and [24] approaches,&CT = 8% and ACT = 23%. The
MSEs of ROI in the four selected frames are given. The MSEsuofS3CC approach are significantly smaller than those of §8] [24].

that the perceptual quality loss of our SGCC approach has legth our SGCC approach or other conventional approaches

fluctuation, compared with objective quality loss. [23] and [24].
o ) Table 1X shows the DMOS values of three approaches for
E. Assessment on subjective quality all test sequences, with complexity reduction being apiprox

We further assess the Subjective qua“ty of our s@cately 8% and 23%. Note that the smaller values of DMOS

approach Compared with [23] and [24] In our experimeﬂmean the better subjective quality, since DMOS quantifies th
the DMOS test was conducted to rate subjective quality fbjective quality difference between the uncompresseld an
the decoded sequences, by the means of Single Stimut@snpressed sequences. Obviously, when complexity rexucti
Continuous Quality Evaluation (SSCQE), which is procességiaround 8%, our SGCC approach has smaller DMOS values
by Rec. ITU-R BT.500 [43]. During the t&stsequences than [23] and [24] for 8 among 11 test sequences. Besides,
were displayed in random order. After viewing each decod&de averaged DMOS value of our SGCC approach is smallest
sequence, the subjects were asked to rate the sequence@mgng all three approaches AU = 8%. Once decoding
a result, DMOS value of each decoded sequence can aénplexity is further deceased to 23%, our SGCC approach
calculated to measure the difference of subjective quali§ greatly superior to [24] for all 11 test sequences, in term
between sequences decoded by original HEVC and by HE\MEDMOS. Recall that decoding complexity reduction of [23]
cannot arrive at 23%, and we thus only compare with [24] for
2Here, a Sony BRAVIA XDVW600 television, with a 55-inch LCD ACT = 23% in Table IX.
gisf'aying Screet”t'o"‘éaesa“ti'ifoeqr;%gfpf'gyrt?;gse%?‘:ﬁge‘_mmfr;it‘?(‘)’vr:g? Furthermore, Fig. 14 shows some frames of four selected
e:/saﬁljr;ﬁ)rv]\{a_?sg rating s‘z:%reXIinclud)és gxclellent (100-\gb)3d (80—61)I, fair S€QuUences, decoded by HEVC with the SGCC, [23] and [24]
(60-41), poor (40-21), and bad (20-1). approaches. We can observe that the sequences by [23] and
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TABLE X
COMPLEXITY CONTROL ERROR(%) OF OURSGCCAPPROACH FORHEVC BITSTREAMS WITH RATE CONTROL
Bit rate 1 Bit rate 2 Bit rate 3 Bit rate 4
ACT (%) ACT (%) ACT (%) ACT (%)
Classes | Sequences 0 20 0 20 0 20 30 0 20 30 0
Traffic +1.02 [ +1.08 | +045 | -0.28 | +0.43 | -0.82 | -0.25 | +0.62 | -1.45 | +0.79 | +2.63
A PeopleOnStreet| +1.79 | -0.96 | +2.56 | +1.67 | +2.57 | +3./9 | -1.20 | +1.77 | +3.86 | +0.76 | -2.50
ParkScene +0.90 [ -0.34 | +1.11 | -0.67 | +1.50 | -0.62 | -0.80 | +0.71 | -0.83 | +0.26 | +1.53
B BQTerrace 245 | -439 | -0.03 | -1.78 | +0.88 | -1.75 | -0.18 | +0.76 | -250 | +0.40 | +2.79
Kimono +0.82 | -0.95 | +0.63 | -1.12 | +0.08 | -1.12 | -1.29 | -0.09 | -1.74 | -0.70 | -0.01
RaceHorses -0.63 -489 | +1.34 | -1.79 | +3.03 | +0.47 | -5.49 | +2.58 | +1.26 | -2.76 -6.91
c PartyScene 245 | 532 | -1.44 | -348 | -0.04 | -222 | -496 | -0.25 | -2.17 | -2.60 | -3.40
RaceHorses -0.97 -4.18 -0.08 -1.15 | +0.12 | +0.04 | -5.24 | +1.72 | +1.12 | -2.08 -6.73
BQSquare -316 | 401 | -217 | 348 | -242 | 372 | -356 | -1.96 | -3.70 | -1.71 | -1.17
D BlowingBubbles| -3.88 | -5.00 | -2.69 | -3.62 | -2.28 | -3.65 | -5.29 | -1.87 | -2.98 | -2.91 | -450
BasketballPass | -1.71 | -3.93 | -1.00 | -1.92 | -058 | -0562 | -432 | -0.24 | 0.06 | -2.16 | -5.69
MAE 1.80 3.19 1.23 1.91 1.27 1.70 | 2.96 1.14 1.97 1.56 3.44
MRE 17.99 | 1593 | 1228 | 953 | 1268 | 851 | 9.88 | 1141 | 9.85 5.19 8.61
TABLE XI

APSNRAND AEW-PSNR pB) oF o0URSGCCAPPROACH FORHEVC BITSTREAMS WITH RATE CONTROL

Class Sequence Bitrate3, AC7=8% /Bitrate1l, AC7=5% Bitrate3, AC7=18% /Bitratel, AC1=15% Bitrate3, AC7=23% /Bitratel, AC1=20%
APSNR AEW-PSNR APSNR AEW-PSNR APSNR AEW-PSNR

Traffic 0.0618 / 0.0554 0.0418 / 0.0339 0.2949 / 0.6880 0.2012 / 0.3102 1.0134 / 5.4027 0.4770 / 3.8365
A PeopleOnStreet| 0.1713/0.1141 0.0757 / 0.0460 0.5142 / 0.6207 0.4547 /1 0.3026 0.8323/4.2424 0.6084 / 2.8400
ParkScene 0.0582 / 0.0380 0.0762 / 0.0490 0.3926 / 1.0378 0.3504 / 0.6955 0.9385 / 4.8877 0.7082 / 3.9699
B BQTerrace 0.0172/0.0175 0.0105 / 0.0086 0.4438 / 1.1507 0.1167 / 0.2280 1.8588 / 6.6625 0.8665 / 6.0677
Kimono 0.1595 / 0.1485 0.112170.0742 0.3395/ 0.3486 0.4164 7 0.3090 0.5632 7 1.9507 0.6139/1.7813
RaceHorses 0.1077 / 0.1269 0.1081 / 0.1549 0.3323/0.7735 0.3195 / 0.4081 0.8656 / 5.2604 0.7179 / 4.5446
C PartyScene 0.0310/0.0364 0.023370.0695 1.3267 7 3.8102 0.2805 / 0.9081 3.5181/10.7087 1.1746 1 6.7472
RaceHorses 0.0909 / 0.0561 0.0706 / 0.0540 0.3112/1.2878 0.2393 / 0.4535 0.8652 / 5.6916 0.8331/5.2178
BQSquare 0.0206 / 0.0174 0.014770.0178 1.1670 7 4.7376 0.4542 7 3.3934 3.27817 10.6592 2.1648710.3724
D BlowingBubbles | 0.0004 / 0.0036 0.0016 / 0.0036 1.4757 1 6.0610 0.8510 / 4.2087 4.7418 [ 13.1899 3.7271 1 12.3745
BasketballPass | 0.1109 / 0.0539 0.0582 / 0.0391 0.4368 / 0.9602 0.3012 / 0.4422 1.0124 7 4.8030 0.6371/ 4.1436
Average 0.0754 / 0.0607 0.0539 / 0.0500 0.6395 / 1.9524 0.3623 / 1.0599 1.7716 / 6.6781 1.1390 / 5.6268

[24] have severe blur and blocky artifacts in ROI,s€r = our SGCC approach are also applicable for different engpdin
8%. On the contrary, our SGCC approach results in betteonfigurations.

subjective quality with less blur and blocky artifacts. Widhe
ACT is 23%, our SGCC approach enjoys more obvious quality
improvement over [23] and [24], as seen in Fig. 14-(b). This
is in accord with the DMOS results above.

VI. CONCLUSION

This paper has proposed a decoding complexity control
approach (namely SGCC) for HEVC, aiming to reduce HEVC
decoding complexity to a target with minimal loss on per-
r%eptual quality. We found two ways to reduce the decoding
complexity of some CTUs: (1) disabling DF and (2) simpli-
In practical applications, the HEVC encoder usually er@bléying MC. However, disabling DF or simplifying MC may
rate control, so that frame-level QP values may vary withicause some visual quality loss in decoded videos. Thus, the
a sequence. Here, we further tested the trained paraméterS@CC formulation was proposed to reduce HEVC decoding
our SGCC approach on the HEVC bitstreams encoded witbmplexity to the target, meanwhile minimizing perceptual
rate control enabling. Here, parameters) andc are chosen quality loss. In this paper, perceptual quality loss wasuatad
according to the range of frame-level QP, as discussed dn the basis of video saliency. For our formulation, thetleas
Section llI-C. The results are shown in Tables X and XI. It cagquare fitting on training data was applied to model the
be seen that the control accuracy of decoding complexity arglationship between complexity reduction/quality lossl ®F
the degradation of quality are comparable to those withatat r disabling/MC simplification. Finally, a potential soluticto
control (Tables VII and VIII). Note that we follow the mostthe proposed formulation was developed, such that SGCC can
recent rate control work of [44] to set the target bit rates thbe accomplished for HEVC decoding. As verified in experi-
same as the actual bit rates at fixed QPs (22, 27, 32 and 3gntal results, our SGCC approach is efficient in complexity
as reported in Tables X and XI. control for HEVC decoding, evaluated in control performanc
We further tested the trained parameters on the HEMWDmplexity-distortion performance, fluctuation of qualibss,
bitstreams encoded with different GOP size. The resultte$aband subjective quality.
XIl and Xl show the results for GOP size of 4. As shown in Our work in current form is implemented on HEVC RA
these tables, the performance of control accuracy andtguabitstreams with hierarchical and open GOP structure. Inis a
loss of sequences are comparable to those with GOP sizeeresting future work to apply our work on other settings,
of 8 (Tables VII and VIIl). Therefore, the parameters itike close GOP structure or LD scenario. Moreover, in cur-
Table IV are effective for the HEVC bitstreams encoded wittent stage, our SGCC approach only concentrates on LCU
different GOP sizes. To summarize, the trained paramefersevel complexity control for HEVC decoding. It is another

F. Performance on HEVC bitstreams with other configuratio
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TABLE XII
COMPLEXITY CONTROL ERROR(%) OF OURSGCCAPPROACH FORHEVC BITSTREAMS WITH GOPSIZE AS4.
QP =22 QP =27 QP =32 QP =37
ACT (%) ACT (% ACT % ACT (%)
Classes|  Sequences 10 20 10 20 30 10 20 30 10 20 30 20

Traffic -0.22 | -0.74 | -0.36 | +0.04 | +1.03 | +1.08 | -0.44 | -0.93 | +2.00 | +0.06 | +0.59 | +0.21

A PeopleOnStreet| +1.76 | -2.19 | -0.60 | +1.54 | -2.28 | +0.58 | +1.48 | +0.39 | +0.62 | +3.47 | -0.45 | -4.94

ParkScene +2.61 | +0.42 | -0.37 | -1.23 | +0.19 | +1.25 | -0.90 | +0.24 | +1.35 | -0.49 | +0.17 | -0.11

B BQTerrace 215 | -432 | +1.43 | +0.42 | +1.57 | +0.46 | +0.41 | -0.80 | +0.80 | +0.50 | +1.26 | +1.52

Kimono +1.93 | -041 | -142 | -065 | -1.84 | -0.72 | -051 | -2.65 | -1.20 | -0.30 | -2.96 | -3.21

RaceHorses -0.55 -2.53 | +0.48 | -2.71 -9.09 -0.40 -0.11 -3.88 | +0.41 | -0.87 -1.74 -8.77

c PartyScene 149 | -2.08 | -0.64 | +0.25 | -438 | +1.12 | -1.21 | -2.79 | +1.68 | +0.37 | -1.04 | -5.87

RaceHorses -1.12 -2.10 -0.23 -2.53 -9.62 | +1.61 | +0.99 | -3.87 -0.41 0.90 -0.94 -8.91

BQSquare +1.37 | -0.10 | -151 | -0.89 | -3.14 | +0.05 | +0.08 | +0.49 | +1.13 | +0.65 | +1.15 | -2.35

D BlowingBubbles| +1.07 | -1.81 | -1.23 | -2.60 | -7.56 | -0.06 | -0.83 | -3.15 | +0.85 | +0.60 | -1.34 | -7.40

BasketballPass | -0.75 | -1.18 | -0.75 | -2.02 | -8.34 | 0.67 053 | -3.30 143 | 021 | -1.32 | -8.68

MAE 1.25 1.49 0.75 1.24 4.09 0.67 0.62 1.87 0.99 0.70 1.08 4.33

MRE 1252 | 7.45 7.51 6.20 | 13.62 | 6.67 3.12 6.24 9.90 3.51 3.60 | 10.83

TABLE XIlI
APSNRAND AEW-PSNR 0B) oF o0URSGCCAPPROACH FORHEVC BITSTREAMS WITH GOPSIZE AS4.
Class Sequence QP=32,AC1=8%/QP=22,AC7=5% | QP=32,AC7=18%/QP=22,AC1=15% | QP=32,AC1=23%/QP=22, AC7=20%
APSNR AEW-PSNR APSNR AEW-PSNR APSNR AEW-PSNR

Traffic 0.1117 /0.0955] 0.0894 / 0.0594 | 0.4280/0.9878 0.3564 / 0.5921 1.3400 / 6.8979 0.8287 7 6.1152
A PeopleOnStreet| 0.2307 /0.2076| 0.0969 7/ 0.0966 | 0.6619/ 1.3651 0.5962 / 0.5960 1.3069 / 8.4901 0.9758 7 7.0114
ParkScene 0.0934/0.0951] 0.1250/0.1256 | 0.50357 1.6180 0.5662 / 0.9668 1.3820 / 7.2926 1.0978 / 6.5683
B BQTerrace 0.034270.0320] 0.0182/0.0210 | 0.42707 1.7091 0.1038 7 0.3968 2.134578.6322 1.079178.9453
Kimono 0.285270.1479 0.1538 7/ 0.0870 0.6056 / 1.1017 0.6826 / 1.1726 1.0407 7 5.7960 0.9926 / 3.9692
RaceHorses 0.1833 / 0.2869 0.1759 / 0.3313 0.6622 / 3.2169 0.5409 / 2.5636 1.5526 / 9.5566 1.3170/ 9.4775
c PartyScene 0.0521 7 0.0947 0.0457 7 0.2057 1.2956 7 5.3079 0.432171.6680 3.5283 7 12.3356 1.597479.9862
RaceHorses 0.1585 / 0.1528 0.1098 / 0.1814 0.4697 / 3.7458 0.3922 / 1.8411 1.3461/9.9917 1.1426 / 9.8653
BQSquare 0.0495/0.0701 0.0340/ 0.0655 1.1450 7 6.5028 0.4106 / 4.8822 3.2117712.1801 2.2608 1 12.2362
D BlowingBubbles| 0.009970.0366| 0.0128/0.0513 | 1.31747 8.0826 0.8062 / 6.2948 479827 14.8854| 4.0667 ] 14.8432
BasketballPass | 0.1717/0.1612| 0.117170.1468 | 0.50937 1.8775 0.455170.9101 1.0825 / 8.2459 0.834378.2901
Average 0.1255/0.1255] 0.0890 / 0.1247 | 0.7296 / 3.2287 0.4857 / 1.9895 2.0658 7 9.4822 1.4721 ] 8.8462

APPENDIXB
PROOF FORLEMMA 4

First, >, g» = N1 + 2N, + 3N3 holds, sinceNy, N,
N> and N3 are the numbers of CTUs at, = 0,1,2,3. As
such, the constraint terms of (22-b) and (28) are equivalent
Next, constraint terms; - ¢ - (N1 + 2Nz + 3N3) of (22-b)
is independent ofv,,. Hence, largeg,, should correspond to
smallerw,, to make>"_ w, - (h1 - g3 + ha - g2 + h3 - gn)
minimal. This way, for each combination df,, N1, N, and
N3, the optimal solution satisfiegw,, < w,,, g, > g,/. Then,
the values ofVy, N1, N3 and N3 are the variables to be solved
for the minimization problem of (22-b). Definings,, })_, as
the ascending sort dfw,, }2_,, the optimal solution{g,, }

n=11 n=1

towards (22-b) can be written as

promising future work to control HEVC decoding complexity
at frame level, which may make our SGCC approach more
flexible for controlling decoding complexity.

APPENDIXA
PROOF FORLEMMA 3
First, upon (23),.1 = 25:1 fn holds. DefiningM =
25:1 f;L, we can turn (24) to

N N
a | Y wafu |+ b=a Y wa-fr | +M-b (32)
n=1 n=1
If I > M, thenlI-b > M -b exists due tob > 0. Given
I-b> M-band (32), we can obtain (25) because> 0.
Therefore, for the proof of (25), we only need to prave M.

Next, we provel > M by contradiction as follows. In the

PROOF FORPROPOSITIONS

case ofI < M, we have}™  f, < 2" f.. Because 3, B “’”f W,
f» = 1 holds if and only ifw, (€ [0,1]) belongs to the )2 WNz+1 < Wy, < WN3+N, (35)
smallest! values in{w,}?_,, the following inequality exists, " 1, ONsiNer1 S Wp < Wy Nyt N,
N N , 0, WN3 4+ Not- N1 41 < Wy < WN.
Wy - fn < Wy, * [y (33) . )
o o Upon (22-b) and (35), we can obtain (28). Note that g3 +
WhenT < M andb > 0, it is obvious that -b < M -b holds. "2 * 9n + s - gn =1 wheng, = 3, according to (16).
Then, givena > 0, we can obtain Finally, Lemma 4 can be proved. |
N N
a | Y wn-fu|+I-b<a- Wy - fo | +M-b. (34) APPENDIXC
1

n=1 n=
However, (34) contradicts with (32). Hence, the assumptionFirst, we apply our method of Section Il to estimate the
of I < M dose not hold, such that > M can be proved. saliency values{w,}"_, of all CTUs in the four training
Finally, the inequality of (25) is achieved. sequences (the same as Section IV) at four QPs (i.e., 22,
This completes the proof of Lemma 3. B 27, 32 and 37). Then, at each QP, the valuesipzf

o~
—1 Wn
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Averaged R-Squarestandard deviation
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Fig. 15. The R-square values for the second-order polyriomgmession onf)’;l Wn = k- N2. Note that the R-square values of the 3rd frames in each

GOP are shown.

for all possible N; € {n}X

n=1
at each frame of the four sequences. Recall that})_; is

the ascending sorted set of saliency valfies }/_, for each

frame. Next, we apply the second-order polynomial regoessi

to each frame for modellin% the relationship betwedh
and zfj;lwn in form of > 't w, = k- N}, wherek

[14]

[15]

is the second-order parameter of the regression for a videg
frame. Note thak is a constant within a video frame, despite

being different across frames. The R-square values of suéH
regression can be obtained across different frames of f%g]

training sequences. Fig. 15 shows R—squareng{;1 Wy, =

k - N? regression along with various frames. It is evident
that the R-square values are above 0.85 for all frames [
four QPs. In addition, the averaged R-square values and thei

standard deviations ar@.9893 + 0.0116, 0.9709 £ 0.0252,

0.9615 £ 0.0334 and 0.9579 + 0.0332 at QP = 22, 27, 32

and 37. ThusZﬁ[;1 w, can be well approximated by N2.
Finally, Proposition 5 can be proved. |
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