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This paper proposes a saliency detection method by exploring a novel low level feature on sparse re-
presentation of learnt texture atoms (SR-LTA). The learnt texture atoms are encoded in salient and non-
salient dictionaries. For salient dictionary, a formulation is proposed to learn salient texture atoms from
image patches attracting extensive attention. Then, the online salient dictionary learning (OSDL) algo-
rithm is presented to solve the proposed formulation. Similarly, the non-salient dictionary is learnt from
image patches without any attention. Then, the pixel-wise SR-LTA feature is yielded based on the dif-
ference of sparse representation errors, regarding the learnt salient and non-salient dictionaries. Finally,
image saliency can be predicted by linearly combining the proposed SR-LTA feature and conventional
features, luminance and contrast. For the linear combination, the weights of different feature channels
are determined by least square estimation on the training data. The experimental results show that our
method outperforms 9 state-of-the-art methods for bottom-up saliency detection.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Saliency detection refers to computing on image features to
characterize the regions attracting different amounts of visual
attention in a scene. Generally speaking, saliency detection is
extensively studied in the context of the human visual system
(HVS). Similar to the HVS, saliency detection enables machines to
survive from processing a deluge of visual data. Thus, it has been
widely applied in computer vision and image processing areas,
such as object detection [1], object recognition [2], image re-
targeting [3], image quality assessment [4], and image/video
compression [5].

For predicting visual attention, saliency detection can be traced
back to feature integration theory [6] by Treisman and Gelade in
1980, which discussed on the possible visual features related to
visual attention. To combine these features together, Koch and
Ullman [7] in 1987 proposed to generate the saliency map for an
input image, indicating which regions are conspicuous to attract
attention in the HVS. Specifically, saliency map is a matrix with the
same size as the input image, and the values of its elements range
in ICCV Workshop 2015.

ulin@buaa.edu.cn (Z. Wang).
from 0 to 1. The large saliency value indicates high probability to
attract human attention. Later, Itti and Koch [8] found out that the
low level feature channels of intensity, color, and orientation are
effective in generating the saliency map. In their method, these
feature channels are decomposed for images at various scales
subsampled by a Gaussian pyramid, and then conspicuity maps are
constructed by center-surround responses to the decomposed
feature channels. In each channel, conspicuity maps are ag-
gregated across different scales. Finally, the saliency map can be
obtained by the linear integration of conspicuity maps of all
channels. Benefiting from the success of Itti's model [8], extensive
saliency detection methods (e.g., [9–13]), using biological plausible
features, have been proposed in the past decade.

Recently, several saliency detection methods (e.g., [14–18])
have been proposed to learn the parameters or even features
from the ground-truth eye fixations1 of training images, for sal-
iency detection. From the perspective of parameters, Zhao and
Koch [16] presented a method to learn weights associated with
conspicuity maps for different feature channels, with least square
fitting to fixations. This replaces the equal weight assignment in
[8,19], thus improving the saliency detection accuracy. However,
1 Fixations are the points where people look during the eye tracking experi-
ment. They are seen as the ground-truth of visual attention.
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Fig. 1. An example of salient patches with similar texture patterns. The regions inside the red squares (enlarged in the corners) are salient patches, in the images of the eye
tracking Kienzle database (the first row) and Doves database (the second row). Some atoms of the dictionaries, learnt from the salient regions of other training images, are
shown in the middle of two images. In addition, the sparse representation coefficients α of the salient patterns regarding the learnt dictionaries are also provided. It can be
seen that the salient patches across the different images may share some similar basic patterns, and these basic patterns may be learnt from the training data. Note that the
patch sizes are 96�96 for DOVES and 41�41 for Kienzle et al., to ensure that the corresponding fovea degrees are around 1.5° in each database.
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only few parameters can be learnt in these methods, such that
the performance of these methods depends on the features of the
conventional methods.

From the perspective of features, Kienzle et al. [17,18] proposed to
directly learn patch patterns of salient and non-salient regions from
the ground-truth eye tracking data. These patterns can be seen as low
level features attracting different amount of visual attention. Speci-
fically, two center-surround texture patches are learnt as the most
relevant patterns for drawing visual attention, and two other patches
are learnt as the least possible patterns for receiving eye fixations.
Then, the saliency of an image patch can be detected, on the basis of
the distance to the learnt texture patterns. However, the learnt four
patch patterns have limited expression, since only two positive and
two negative patterns are available for saliency detection.

Fig. 1 shows the possibility of learning hundreds of salient
patterns (by applying the dictionary learning algorithm) for sal-
iency detection. Accordingly, this paper proposes to learn ex-
tensive positive and negative patterns from the eye tracking data
of training images, for bottom-up saliency detection. Specifically,
this paper first proposes a formulation with a novel center-sur-
round term, for learning two discriminative dictionaries. These
two dictionaries contain the atoms for basic texture patterns of
salient and non-salient regions, respectively. In light of online
dictionary learning [20], we develop an online salient dictionary
learning (OSDL) algorithm to solve the proposed formulation, and
then the salient and non-salient dictionaries can be learnt from
the eye tracking data of training images. Given the learnt dic-
tionaries, a novel feature based on sparse representation of learnt
texture atoms (SR-LTA) is worked out in our method. Such a
feature is generally based on the errors of sparse representation
regarding salient and non-salient dictionaries. Next, the saliency of
an image can be predicted, via combining the SR-LTA feature with
conventional luminance and contrast features. For the linear
combination, the weights corresponding to each feature channel
are estimated via least square fitting on the training data. Similar
to other bottom-up methods [21,17,18], this paper only works on
gray images with natural scenes.

In summary, the main contributions of this paper are two-
folds:

� We address a novel dictionary learning formulation solved by
the proposed OSDL algorithm, for generalizing salient and non-
salient dictionaries from training eye tracking data.

� We propose the SR-LTA feature in light of the learnt dictionaries,
together with other two conventional features (luminance and
contrast), for bottom-up saliency detection of gray images.

This paper is the extended version of our conference paper
[22], with some advanced work. The advances are summarized as
follows. First, the related work of saliency detection is extensively
reviewed, from biologically inspired and learning based aspects.
Second, this paper provides technical details about the derivation
of our method, e.g., the derivation of dictionary updating in our
ODSL algorithm. Third, we analyze the computational time of our
method, by comparing to other methods. At last, we provide more
comprehensive comparison and analysis in this paper. For ex-
ample, we compare our method with the latest work of [23], and
show that our method still outperforms [23] in bottom-up saliency
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detection. More importantly, we thoroughly analyze the perfor-
mance of our method from three aspects, i.e., feature effectiveness,
learning performance and robustness.
2. Related work

The existing methods on saliency detection can be classified
into two categories: either biologically inspired or learning based
models. In the following, we briefly review the saliency detection
literatures on these two categories, respectively.

2.1. Biologically inspired saliency detection

Most saliency detection methods are biologically inspired, i.e.,
they are developed according to the understanding of the HVS. To
be more specific, inspired by study on the eye movement de-
ployment of the HVS on images, the computational models on
image features have been extensively explored to detect saliency.
The representative work on detecting image saliency is Itti's model
[8], which combines center-surround features of color, intensity
and orientation together. Afterwards, Koch and Ullman [24] ex-
tended the Itti's model by incorporating the proto-object inference
in the saliency map produced by [8]. Benefitting from the recent
success on graph theory, graph-based visual saliency (GBVS)
method [10] has been proposed to model the saliency of an image,
by forming and then normalizing activation maps that also depend
on the low level features of color, intensity and orientation. In [10],
a fully connected graph is built, which uses directed edges to re-
present the weights on feature dissimilarity between different
locations. Then, the equilibrium distribution over map locations is
treated as activation and saliency values, by defining the equiva-
lence relation in the graphs with Markov chains. Beyond, a few
advanced graph-based methods [25,26] have been proposed re-
cently. Besides, it is intuitive that the most informative part of a
scene can attract human attention. Therefore, from the perspective
of information theory, some methods [9,27–29] have been pro-
posed to measure the image entropy for saliency estimation. For
example, attention based on information maximization (AIM) [9]
was proposed to measure self-information entropy of visual fea-
tures for detecting saliency in images. Besides, benefitting from
the recent development in signal processing area, some latest
signal processing tools have been incorporated in saliency detec-
tion, e.g., spectral analysis based [11,30,31], principle component
analysis (PCA) based [12], and sparse representation based [32,33]
methods. Most recently, some other state-of-the-art methods, e.g.,
adaptive whitening saliency (AWS) [34], boolean map based sal-
iency (BMS) [13] and nonlocal center-surround reconstruction
[35], have also been proposed to detect image saliency.

However, the understanding of the HVS is still in its infancy,
and biologically inspired saliency detection thus has a long way to
go yet. Recently, machine learning techniques have emerged as a
potential way to construct visual attention model from the eye
tracking data. Our method mainly focuses on learning the dis-
criminative dictionaries from the training eye tracking data for
saliency detection, rather than simply using the spatially or tem-
porally neighboring patches as in the previous saliency detection
work [32,33]. Next, we briefly overview the existing methods on
learning based saliency detection.

2.2. Learning based saliency detection

The learning based saliency detection methods have emerged
during the past decade. The central of these methods is learning
visual attention models from eye tracking data. Here, the eye
tracking data are normally obtained by using the eye tracker to
record fixations of several observers on viewing specific images
[15]. Generally speaking, the learning based saliency detection
methods can be further divided into three categories: the learning
of parameter, bottom-up feature and semantic feature. The fol-
lowing briefly reviews these three classes of methods.

2.2.1. Learning parameters for saliency detection
Typically, several features on determining visual attention are

linearly combined with equal weights, for predicting saliency
maps. Recently, some methods [14,36,15,16] have been proposed
to learn such weights from eye tracking data, through optimal
fitting to the ground-truth fixations. For example, the weights of
conspicuity maps of three features in Itti's model [8] are equally
set to 1/3. To improve the precision of saliency detection, Itti and
Koch [14] proposed to learn the optimal weights of each saliency
feature, with minimal square error on saliency prediction.

Afterwards, [16] extended to learn the weights of both top-
down (i.e., face) and bottom-up features to enhance the accuracy
of saliency detection in [8] and [19]. Moreover, Judd et al. [15]
integrated a great number of low, middle and high level image
features together, with their corresponding weights learnt through
a linear SVM classifier. However, the above learning based meth-
ods have to work together with the biologically inspired saliency
detection methods, and hence they can only make some im-
provement over those conventional methods, with the help of
ground-truth eye fixation data.

2.2.2. Learning bottom-up features for saliency detection
Towards effective saliency detection, we may learn the relevant

features from the eye tracking data [17,37,18,21,38,23], instead of
studying on the HVS. To be more specific, Kienzle et al. [17,18]
proposed a nonparametric bottom-up approach on learning from
the eye tracking data to obtain the patches of texture patterns,
corresponding to positive and negative eye fixations. As a result,
two center-surround texture patches are learnt as the most re-
levant patterns for drawing visual attention, and two other pat-
ches are learnt as the least possible patterns for receiving fixations.
Then, the saliency of an image patch can be calculated with a
simple feed-forward network, which integrates the radial basis
units of ℓ2 norm distances between the current image patch and
four learnt texture patterns. Later, they developed a similar ap-
proach [37] to model video saliency, which further learns the
bottom-up temporal filters from the eye tracking data. In addition,
a gaze-attentive fixation finding engine (GAFFE) [21] was devel-
oped to detect saliency, based on four low level image features:
luminance, contrast, and bandpass outputs of luminance and
contrast. In GAFFE, the bandpass filters of both luminance and
contrast were learnt from the extensive eye tracking data [39],
which can significantly enhance the accuracy of saliency detection.

2.2.3. Learning semantic features for saliency detection
Most recently, a few saliency detection methods [38,40,23]

have been proposed to learn high level semantic features, which
contain certain semantic information, such as face and object.
These methods usually benefit from the great success of deep
learning. For example, Huang et al. [23] proposed the saliency in
context (SALICON) method to incorporate high level semantic
features in saliency detection, which are learnt by deep neural
networks. However, the performance of these methods heavily
relies on the existence of semantic objects. In other words, they
are not “good at” finding low level features attracting visual at-
tention. Besides, these deep learning based methods require the
significantly sufficient training data, which normally take great
effort on collecting the eye tracking data.

This paper mainly concentrates on learning low level texture
features by unitizing sparse representation and dictionary
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learning, for bottom-up saliency detection of gray images. Speci-
fically, our method learns two discriminative dictionaries (i.e.,
salient and non-salient dictionaries) from the eye tracking data,
thus avoiding the simplicity of salient/non-salient texture patterns
in [17,18]. Then, our method computes the SR-LTA feature, upon
sparse presentation error of image patches with regard to the
learnt salient and non-salient dictionaries. Compared with the
learnt bandpass filters of [21], it has advantage in searching the
center-surround patterns, which are indeed important in de-
termining saliency maps of gray images. Finally, a parameter
learning mechanism is also adopted in our method for assigning
optimal weights to the feature channels of the luminance, contrast
and SR-LTA.
3. Dictionary learning for salient and non-salient texture
atoms

In this section, we apply the dictionary learning method to
learn both salient and non-salient texture atoms to provide the
low level texture feature for saliency detection. We introduce in
Section 3.1 our dictionary learning formulation on generalizing
both salient and non-salient texture atoms. In Section 3.2, we
present a solution to the proposed dictionary learning formulation.

3.1. Dictionary leaning formulation

In sparse representation, an image patch2 ∈ x m can be spar-
sely represented by only a few texture atoms of dictionary

∈ ×D m k. Specifically, sparse coefficients α ∈ k need to be cal-
culated for estimating image patch x with respect to dictionary D.
In fact, the problem of sparse representation can be formulated by

α α∥ − ∥ ∥ ∥ ≤ ( )α
Lx Dmin s. t. , 12

2
0

where L is the sparsity level of coefficients α. In (1), the atoms in D
indicate the basic texture patterns for reconstructing image pat-
ches. Here, dictionary D needs to be learnt from training image
patches = { } =X xi i

n
1. This can be achieved [41,42] by
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where α= { } =A i i
n

1 is the set of sparse representation coefficients
corresponding to X. In (2), λ is a regularization parameter, re-
presenting the tradeoff between the reconstruction error

α∥ − ∥x Di i 2
2 and sparsity level α∥ ∥i 1. Next, based on (2), we con-

centrate on the proposed formulation on learning two dictionaries
for salient texture and non-salient texture atoms, respectively.
Since the center-surround patterns play an important role in at-
tracting human visual attention [18], a novel center-surround term
is incorporated in our formulation to encourage/discourage the
center-surround patterns in the learnt salient/non-salient
dictionary.

To be more specific, we first propose a weight function for
encouraging the center-surround patterns in the learnt dictionary
with salient texture atoms. In our weight function, the weight of
each pixel in an atom is imposed according to its Euclidean dis-
tance to the atom's center. Assume that there are N different Eu-
clidean distances sorted in an ascending order. In each atom, the
weight for the pixels with the q-th sorted Euclidean distance can
be calculated:
2 In this paper, the mean value of each image patch is removed to avoid the
impact of pixel intensity on texture analysis.
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where nq stands for the number of pixels with the q-th Euclidean
distance. An example for weight function is shown in Fig. 2.

Then, the set of weights W(q) for all pixels in an atom is re-
presented by vector ∈ ×lT m1 . Note that m is the total number of
pixels in an atom. Upon lT , the center-surround term can be de-
signed by ∥ ∥l DT

2
2, which quantifies the degree of center-surround.

Given the center-surround term, we have the following opti-
mization formulation to learn (salient and non-salient) texture
atoms by rewriting (2):
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where ′S is the training set of fixation patches3 denoted by { ′} =
′xi i

n
1,

and ″S is the training set of non-fixation patches denoted by
{ ″} =

″xi i
n

1. α{ ′} =
′

i i
n

1 and α{ ″} =
″

i i
n

1 are sparse representation coefficients
corresponding to { ′} =

′xi i
n

1 and { ″} =
″xi i

n
1, respectively. In addition, ′n and

″n are the numbers of image patches in ′S and ″S . In (4), ′D is the
dictionary with salient texture atoms, learnt from the training
fixation patches, and ″D is the non-salient dictionary generalized
from training non-fixation patches. η ( > )0 is a regularization
parameter to control the influence of the center-surround term.
Obviously, the center-surround degree is encouraged for the atoms
in salient dictionary ′D , as ∥ ′ ∥l DT

2
2 needs to be large when η > 0.

On the contrary, the center-surround degree is discouraged in
non-salient dictionary ″D by making ∥ ″ ∥l DT

2
2 small.

3.2. Solution to the dictionary learning formulation

As seen from (4), the dictionaries with salient and non-salient
texture atoms can be learnt separately. This section only focuses
on learning the salient dictionary, and we can use the similar way
to obtain the non-salient dictionary. According to (4), the salient
dictionary can be learnt with the following formulation:
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To solve (5), the OSDL algorithm is proposed, based on online
dictionary learning method [20], due to its fast speed and warm
restart mechanism.

Specifically, the optimization problem in (5) is normally divided
into two sub-problems: sparse representation and dictionary up-
dating. That is, once dictionary ′D is fixed, α′ = { ′} =A i i

k
1 can be ob-

tained through sparse representation for the first step. At the
second step, given ′A , ′D can be solved by dictionary updating. The
above two steps are iterated until convergence.

Sparse representation: Assume that at the t-th iteration, ′xt is the
image patch randomly selected from the training set of fixation
patches. Sparse representation is conducted to obtain sparse
coefficients α ′t of ′xt . Since η ∥ ′ ∥l DT

2
2 in (5) is independent of α ′t , the
3 In this paper, fixation patches mean the training patches attracting several
fixations, and non-fixation patches stand for the training patches attracting no
fixation.



Fig. 2. An example of the center-surround weight function for the 6�6 image patches. In the left figure, the number in each grid is the value of q for the weight function in
(3), indicating the q-th Euclidean distance. The right figure shows the weight of each pixel calculated by (3). Note that this example is only an illumination, and the real patch
size is much larger, i.e., 96�96 for DOVES and 41�41 for Kienzle et al.

Table 1
The summary of online salient dictionary learning (OSDL) algorithm.

– Input: The training set of fixation patches ′ = { ′} =X xi i
n

1.

– Output: The learnt dictionary ′D with salient textures atoms.

� Set ′ ∈ ×B k k
0 and ′ ∈ ×C m k

0 to be zero matrices.

� Initialize ′D0 with the randomly selected fixation patches from the training

set.
� For: t¼1 to T

1. Select an image patch ′xt randomly from training set ′X .
2. Obtain α′t by solving (6) with LASSO.
3. Update ′Bt and ′Ct as,

α α′ = ′ + ′ ′−B B ,t t t t
T

1

α′ = ′ + ′ ′−C C x .t t t t
T

1

4. Update each atom of the dictionary as follows,

– For: j¼1 to k

γη′ = ′ +
′ ( )

( ′ − ˜ ′ ′ ) + ′− −ll
j j

d d
B

c D b d1
,

2 .j t j t
t

j t j t j t
T

j t, , 1 , , , , 1

– End for

5. Obtain the salient dictionary ′ = [ ′ … ′ ]D d d, ,t t k t1, , for the current

iteration.

� End for

� Return learnt dictionary ′ = ′D DT .
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following formulation holds:

α α αλ′ ≜ ∥ ′ − ′ ′ ∥ + ∥ ′ ∥
( )α ′∈

−


x Dargmin ,
6

t t t t t1 2
2

1
t

k

where ′−Dt 1 is the salient dictionary learnt at the last iteration −t 1.
In this paper, LASSO algorithm [43] is utilized for solving (6).

Dictionary updating: After the sparse representation step of the
t-th iteration, sparse coefficients α{ ′} =i i

t
1 for fixation image patches

{ ′} =xi i
t

1 are obtained. Given α ′t , the dictionary needs to be updated at
the t-th iteration with the following optimization function ac-
cording to (5),

∑
( )

α αλ η′ ≜ (∥ ′ − ′ ′ ∥ + ∥ ′ ∥ − ∥ ′ ∥ )
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′Dt is the salient dictionary learnt at the t-th iteration. To solve (7),
we use the block-coordinate descent [20] to update each atom of
the dictionary as follows,

∑ αγ η′ = ′ − ∂
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where

˜ ′ = [ ′ … ′ ′ ′ … ′ ]− + − −D d d d d d, , , , , , .j t t j t j j t k t, 1, 1, 1, 1 , 1

In (8), ′d j t, refers to the j-th atom of the dictionary at the t-th
iteration, and γ is the learning rate of gradient descent. Note that
dictionary ′Dt is updated for the t-th iteration, once all atoms
{ ′ } =d j t j

k
, 1 are renewed in left–right order. Note that in ˜ ′D j t, only ′d j is

the variable to be updated, whereas { ′ … ′ }−d d, ,t j t1, 1, have been
updated in the current iteration and { ′ … ′ }+ − −d d, ,j t k t1, 1 , 1 have been
updated in the ( − )t 1 -th iteration. According to Appendix, (8) can
be rewritten as

γ γη′ = ′ + ( ′ − ′ ′ ) + ′ ( )− −ll
t

d d c D b d
2

2 . 9j t j t j t j t j t
T

j t, , 1 , , , , 1

Note that, compared with ˜ ′D j t, , ′D j t, is the matrix where the vari-
able ′d j is replaced by ′ −d j t, 1.

In (9), ′b j t, and ′c j t, are the j-th columns of ′Bt and ′Ct , which are
the matrices storing all information of sparse coefficients and
image patches from the previous iterations (i.e., from iteration 1 to
t). Here, ′Bt and ′Ct are defined as

∑

∑

α α α α

α α

′ = ′ ′ = ′ + ′ ′

′ = ′ ′ = ′ + ′ ′
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t
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t

i i
T

t t t
T

1
1

1
1

For achieving the warm restart mechanism, γ t2 / can be ap-
proximatively replaced by ′ ( )j jB1/ ,t , where ′ ( )j jB ,t is the j-th di-
agonal element of ′Bt . Dictionary ′Dt is updated for the t-th itera-
tion, once all atoms { ′ } =d j t j

k
, 1 are renewed from left to right. The

overall procedure of our OSDL algorithm is summarized in Table 1.
4. Saliency detection with the features regarding learnt tex-
ture dictionaries

4.1. The SR-LTA feature

For detecting saliency, the SR-LTA can be used as a feature
channel. When calculating the SR-LTA feature for a pixel, the im-
age patch with this pixel as the center needs to be extracted. Then,
the extracted patch ∈ x m is represented sparsely by ′D and ″D ,
respectively. As such, the reconstruction errors of sparse re-
presentation regarding ′D and ″D are obtained. Afterwards, the
difference between reconstruction errors of α″ ″D and α′ ′D for an
image patch is denoted as r and computed by
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α α= ∥ − ″ ″ ∥ − ∥ − ′ ′ ∥ ( )α α″ ′
r x D x Dmin min 112

2
2
2

where α″ and α′ are the sparse coefficients of x with respect to ″D
and ′D , respectively. Note that a large value of r indicates the image
patch is “close” to saliency texture atoms and “far” from non-salient
texture atoms.

It has been shown in Fig. 3(a) that the human fixation map
tends to be sparse, in which the saliency of major pixels is around
zero. It is due to the fact that human visual attention consistently
focuses on small regions. However, as can be seen from Fig. 3(b),
the dynamic range of r for the conspicuity map generated by (11)
is far from that of ground-truth human fixations. Hence, we in-
troduce an exponential function into the SR-LTA feature: = τf r1 ,

where f1 is the final pixel-wise output for the SR-LTA feature
channel. Moreover, τ is a parameter for adjusting the dynamic
range of f1 to cater for the real distribution of fixations. Here, a
large value of τ is required for a more sparse distribution of con-
spicuity values. For example, as seen from Fig. 3(c), τ = 5.6 makes
the distribution of the conspicuity values of f1 approaching to the
ground-truth human fixation map. Accordingly, τ is set to 5.6 in
our experiments in Section 5. Finally, the pixel-wise SR-LTA fea-
ture f1 for an image can be achieved by computing f1 of all pixels.

4.2. Saliency detection with SR-LTA feature

Now, we focus on the saliency detection by combining the SR-
LTA feature with other two features. In [8], it has been pointed out
that the luminance is an important factor on attracting human
attention. However, the luminance is not considered in dictionary
learning for SR-LTA. Therefore, the luminance feature is included
in our method. Besides, our saliency detection method also takes
the contrast feature into account, the same as [21]. Specifically,
luminance is a low level feature of the image, indicating how
Fig. 3. An example of distributions of human fixation map, conspicuity map by (11), and
human fixations, the sparse representation errors in (11), and the exponential function f1
weights in the corresponding maps, with pixels sorted in ascending order of weights in
values of human fixation map in (a).
“bright” each pixel is. According to the study of the HVS, [21] de-
fines the luminance as a weighted average of grayscale intensity
for each image patch, using a circular raised cosine weighting
function from the patch center. Contrast is the root-mean-square
contrast within the image patch, which is also weighted by circular
raised cosine function. High contrast value means that the center
of the image patch is outstanding from the whole patch in in-
tensity. In brief, luminance contains the grayscale intensity, while
contrast implies the luminance difference of the image patch. For
more details about the computation on features of luminance and
contrast, refer to [21]. Then, final saliency map S can be computed
by

∑ ω= ( )
( )=

S f ,
12p

p p
1

3

where { }f f f, ,1 2 3 indicate three low level features: our SR-LTA
feature, luminance, and contrast, with ω ω ω ω= [ ], , T

1 2 3 being their
corresponding weights. (·) is the normalization operator. Note
that our method can only work on the gray images, since color
information is not considered.

Next, the remaining task for saliency detection on a gray image
by (12) is to work out the weight of each feature channel. In fact,
larger weight should be assigned to the feature channel, of which
conspicuity map is more close to the human fixation map. Let vs be
the vectorized human fixation map of a training image. Given vs of
all training images, the optimal weights ω can be obtained by
solving the following ℓ2-norm optimization with least square es-
timation,

∑ ∑ω ω ω∥ − ∥ ∈ ( ) =
( )

ω
=

U varg min s. t. 0, 1 , 1.
13

s s p
s

2
p 1

3

In (13), Us is the matrix of conspicuity maps for each training
conspicuity map by f1. In the first row, (a), (b), and (c) are the maps, generated by
of sparse representation errors. In second row, (a), (b), and (c) are the distribution of
the map. Note that the exponent τ is set to be 5.6 according to the distribution of



Table 2
Details of two databases used in our experiments.

DOVES Kienzle et al.

Images 101 200
Human observers 29 14
Image size in pixel 1024�768 1024�768
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image, in which each column denotes the conspicuity map of one
feature channel, among SR-LTA, luminance, and contrast features.
For solving the least square estimation of (13), the disciplined
convex programming approach [10] is applied in our method. Fi-
nally, the optimal weights corresponding to different feature
channels can be worked out with least square fitting to the human
fixations (Fig. 4).
Image size in visual angle 17°�13° 36°�27°
Total fixations 30,000þ 18,000þ
5. Experimental results

In this section, the experimental results are presented to
evaluate the proposed method for saliency detection on gray
images from two eye tracking databases: DOVES [39] and Kienzle
et al. [18]. In Section 5.1, we introduce the databases, training data
and parameter settings in our experiments. In Section 5.2, we
compare the saliency detection results of our and other 9 methods.
In Section 5.3, we further analyze the performance of our method,
from the aspects of feature effectiveness, learning performance
and robustness.

5.1. Experimental setup

5.1.1. Database
Since this paper mainly concentrates on the low level texture

feature for saliency detection, only gray natural images were tes-
ted in our experiments. Here, the databases of DOVES [39] and
Kienzle et al. [18], which provide the eye tracking data over gray
images, were utilized for both training and test tasks of our ex-
periments. Note that the DOVES database includes natural images
with few semantic objects, whereas the Kienzle et al. database
contains the images with some semantic objects. Here, both the
training and test processes were conducted for each database in-
dividually. In Table 2, we list the key properties of these two da-
tabases. For more details, refer to [39] and [18].

5.1.2. Training patches
For each database, we divided the images into training and test

sets. For the training set, 78 and 150 images were randomly cho-
sen from DOVES and Kienzle et al. databases, respectively. The
remaining 23 and 50 images in these two databases were used for
the test, to evaluate the performance of saliency detection meth-
ods. Here, the three rounds of cross validation were applied in
each database for the evaluation in our experiments. Next, in our
method, about 5% patches with top fixation density were picked
out from the training set of each database to learn the salient
dictionaries. The same amount of patches, in which the fixation
Fig. 4. Procedure of our saliency detection method. The input image is processed throu
three conspicuity maps. Note that the conspicuity map of our SR-LTA feature channel
exponential function are processed on these maps to make saliency detection more rea
numbers rank bottom 5%, were picked out for learning non-salient
dictionaries. To eliminate the influence of location on eye tracking
data, each non-fixation patch is extracted in the same location as
selected fixation patch, but from different images. It is worth
pointing out that the patch sizes were 96�96 for DOVES and
41�41 for Kienzle et al., to ensure that the corresponding fovea
degrees are around 1.5° in each database. In addition, all training
patches from the two databases were down-sampled to be 16�16,
such that the pixel number m of learnt dictionary atoms is 256.

5.1.3. Parameter setting
All parameters related to our experiments are summarized in

Table 3. For dictionary learning with our OSDL algorithm, accord-
ing to the empirical settings in [20], the number of atoms k of each
dictionary was set to 4 m, and the regularization parameter λ in (4)
for the tradeoff between reconstruction error and sparsity was set
to m1.2/ . In addition, parameter η in (4) was tuned to 0.05 (to be
discussed in Section 5.3), and the learning rate γ in (9) was set to
0.05 in our experiments, to make the results appropriate. For
saliency detection, as verified in Section 4.1, power parameter τ in
exponential function f1 was chosen to be 5.6, such that the dis-
tribution of saliency detected by our method is similar to that of
human fixation map. Moreover, the weights corresponding to
different features were learnt using (13) for both DOVES and
Kienzle et al. databases, and the final weights are { }0.72, 0.09, 0.19 .

5.2. Comparison

From now on, we present the saliency detection results of our
method, compared with other 9 state-of-the-art methods, in-
cluding BMS [13], Itti et al.'s method [8], Duan et al.'s method [12],
GAFFE [21], Hou et al.'s method [30], Zhao et al.'s method [16],
Judd et al.'s method [15], AWS [34], and SALICON [23]. The same
center bias mask [12] was employed in our and all other methods,
since it has been pointed out [15] that the center bias is able to
make saliency detection more precise according to the HVS. Here,
the accuracy of saliency detection is evaluated using the metrics of
gh three channels, including our SR-LTA feature, contrast, and luminance, to obtain
is obtained through two learnt dictionaries. Then, a center bias mask [12] and an
sonable. The weighted sum of those three maps makes up the final saliency map.



Table 3
The setting of parameters for our method.

Dictionary learning Dictionary atom size m 256 pixels
Atoms number in a dictionary k 1024
Regularization parameter λ 0.075
Regularization parameter η 0.05
Learning rate γ 0.05

Saliency detection Power parameter τ 5.6
Combination weights ω{ } =p p 1

3 { }0.72, 0.09, 0.19

M. Xu et al. / Pattern Recognition 60 (2016) 348–360 355
receiver operator characteristics (ROC), area under the ROC curve
(AUC), normalized scan-path saliency (NSS), linear correlation
coefficient (CC), and chi-square distance (χ2 distance). Besides, the
computational cost is also compared in this section.

5.2.1. ROC curves and AUC
As a metric of detection accuracy, the ROC curve [44] is plotted

as false positive rate (FPR) versus true positive rate (TPR) at various
detection thresholds. Here, ROC curve is applied to show how well
the detected saliency map predicts human fixations. Specifically, in
a saliency map each pixel is assigned with a saliency value, ran-
ging from 0 to 1. If the saliency value of a pixel is greater than a
predefined threshold, it is seen as the predicted positive sample.
Otherwise, it is seen as the negative sample. By varying the
threshold from 1 to 0, the ROC curves can be plotted with different
pairs of FPR and TPR, which both increase from 0 to 1. Note that
FPR indicates the proportion of incorrectly predicted fixations
among all ground-truth non-fixations, and TPR means the ratio of
correctly predicted fixations among all ground-truth fixations.
Therefore, a large TPR with small FPR implies more accurate sal-
iency detection. Furthermore, AUC defines the area under the ROC
curve, which is calculated to quantify the ROC curve. Obviously, a
larger value of AUC means a better result for saliency detection.

In Fig. 5, we show the ROC curves of saliency detection by our
and other 9 methods, averaged over all test images, for each da-
tabase. Meanwhile, Table 4 tabulates the AUC results of our and
other 9 methods. It can be seen from Fig. 5 and Table 4 that in
comparison with all 9 methods, our method offers the better AUC
results on detecting saliency of test images from the DOVES da-
tabase, which rarely contains semantic objects. However, the
performance of our method is inferior to the latest SALICON [23]
for the Kienzle et al. database, where some semantic objects are
included in the images. The superior performance of [23] is mainly
due to the top-down semantic features learnt by the deep neural
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Fig. 5. The ROC curves of saliency detection by our and
networks. In a word, our method provides effective low level
features for bottom-up saliency detection.

5.2.2. NSS and CC
Next, we move to the comparison of NSS and CC metrics for a

more comprehensive evaluation. For evaluating the accuracy of
saliency detection, NSS is computed to quantify the relevance
between fixation locations and saliency prediction. To be more
specific, the NSS score [45] is averaged over the normalized sal-
iency value of all human fixations:

( )∑
σ

μ= ( ) −
( )=m

x ySNSS
1

, ,
14s k

m

k k s
1

where μs and ss are the mean and the standard deviation of the
saliency map, respectively. ( )x yS ,k k indicates the saliency value at
fixation ( )x y,k k , andm is the total number of human fixations. CC is
another popular metric to measure the linear correlation between
human fixation map ( )x yH , (convolved with Gaussian window)
and saliency map ( )x yS , , where (x,y) is the location of each pixel in
the image. It can be calculated by

( ) ( )μ μ

σ σ
=

∑ ( ) − · ( ) −

( )

x y x yH S
CC

, ,
,

15

x y h s

h s

,

2 2

where μh and sh represent the mean and standard deviation of the
human fixation map H, while μs and ss denote the mean and
standard deviation of predicted saliency map S. Note that a larger
value of NSS or CC indicates more accurate saliency detection.

The NSS and CC results, averaged over all test images of each
database, are also listed in Table 4. Again, it can be found in this
table that our method is significantly superior to all other
8 methods (excluding the SALICON [23]), in terms of both NSS and
CC metrics. Compared with [23], our method is much better in the
DOVE database, while it performs a little worse in the Kienzle et al.
database. It implies that our method is capable of bottom-up sal-
iency detection due to the learnt low level features. By contrast,
[23] is able to provide high level features for top-down saliency
detection. However, the standard deviations of [23] are rather
high, since it does not perform well for images with few semantic
object in the Kienzle et al. database. Such a reason is to be verified
in the following subjective evaluation. It is worth pointing out that
the high level features of [23] are learnt from hundreds of images
(from exterior databases) with the deep neural networks.
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other 9 methods over two databases, respectively.



Table 4
The saliency detection results on test images of two databases.

Metrics DOVES Kienzle et al. Time

AUC NSS CC χ2 AUC NSS CC χ2 cost(s)

Our 0.8867 .028 1.9617 .365 0.5827 .086 0.5717 .057 0.7667 .065 1.1877 .456 0.4887 .139 0.6027 .057 0.24
SR-LTA 0.8757 .027 1.8157 .358 0.5757 .089 0.5807 .054 0.7657 .064 1.1997 .512 0.4917 .146 0.6187 .061 –

BMS 0.8347 .057 1.2747 .374 0.3837 .112 0.6927 .070 0.7287 .093 0.8877 .471 0.3647 .170 0.6797 .057 0.46
Itti 0.8507 .036 1.3317 .234 0.4147 .077 0.7027 .051 0.7347 .068 0.8657 .277 0.3647 .110 0.6887 .052 0.16
Duan 0.8707 .043 1.4637 .272 0.4487 .093 0.6847 .057 0.7357 .080 0.8997 .346 0.3877 .142 0.6827 .056 1.53
GAFFE 0.8527 .050 1.4047 .313 0.4327 .102 0.6897 .060 0.7217 .076 0.8317 .333 0.3577 .139 0.6837 .056 7.65
Hou 0.8287 .061 1.2137 .343 0.3827 .124 0.7047 .058 0.6907 .095 0.6307 .388 0.2867 .179 0.6987 .062 0.31
Zhao 0.8437 .052 1.3087 .385 0.4077 .123 0.7007 .051 0.7277 .062 0.8607 .288 0.3597 .113 0.6857 .052 0.29
Judd 0.8497 .058 1.4387 .415 0.4397 .133 0.6837 .064 0.7417 .082 0.9817 .491 0.3997 .143 0.6707 .053 13.34
AWS 0.8227 .034 1.1837 .248 0.3637 .079 0.7057 .066 0.7097 .092 0.8257 .512 0.3377 .174 0.6907 .057 4.37
SALICON 0.8637 .042 1.6137 .489 0.4847 .120 0.6847 .057 0.7757 .075 1.32771.139 0.5107 .170 0.5997 .070 –

Fig. 6. Saliency maps of four test images from DOVES database, output by our and other 9 methods as well human fixation map. From left to right: Input images, human
fixation maps, our, BMS, Itti, Duan, GAFFE, Hou, Zhao, Judd, AWS and SALICON methods.

4 There is only a demo of SALICON on the website [46] but without any source
code. Thus, the computational time of SALICON is not included in the comparison.
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5.2.3. χ2 distance
χ2 distance statistically measures the difference between the

expected distribution and observed distribution, via the χ2 test.
We see normalized human fixation map ˜ ( )x yH , as the expected
distribution, and saliency map ˜( )x yS , as the observed distribution.
Then, the χ2 distance is defined as

( )∑χ =
˜ ( ) − ˜( )
˜ ( ) + ˜( ) ( )

x y x y

x y x y

H S

H S
1
2

, ,

, ,
.

16x y

2

,

2

Obviously, less χ2 distance means better saliency detection. We
tabulate in Table 4 the χ2 distances of our and other methods.
Again, our method generally performs the best for bottom-up
saliency detection.

5.2.4. Saliency maps
At last, we show in Figs. 6 and 7 the saliency maps of several

randomly selected test images, detected by our and other
9 methods as well as the human fixation map. From these figures,
we can see that in comparison with other methods, our method is
capable of well locating the saliency regions, much closer to the
maps of human fixations. We can further see from Fig. 7 that [23]
yields almost perfect saliency maps for images with semantic
objects (e.g., the second and last images). Nevertheless, it fails to
generate accurate saliency maps for images without any semantic
object (e.g., the first and seventh images). On the other hand, the
subjective results here show the great performance of our method
in bottom-up saliency detection.

5.2.5. Computational time
The average running time (seconds per image) of our and other
saliency detection methods is listed in Table 4. Note that the codes
of all methods were run on Matlab 2012b at a computer with Intel
Core i7-4770 CPU@3.4 GHz and 16 GB RAM. As seen from Table 4,
the computational time of our saliency detection method ranks
second among all methods, except SALICON.4 This verifies that our
method performs well in time efficiency.

5.3. Performance analysis

5.3.1. Analysis on feature effectiveness
Our method is based on a novel low level feature SR-LTA, and it

is important to evaluate its benefit to the improvement of saliency
detection accuracy. To this end, in our method we set the weight of
the SR-LTA channel to one, and the weights of other channels to
zero. Then, we report the results in the second row of Table 4. As
seen from this table, the accuracy of saliency detection by the SR-
LTA feature is better than other methods, in terms of AUC, NSS, and
CC. More interestingly, it even slightly outperforms our method in
AUC and CC values for the Kienzle database. Besides, the saliency
detection accuracy of each single feature is also shown in Fig. 9 for
further comparison. We can find that the proposed SR-LTA feature
performs much better than two conventional features, i.e., lumi-
nance and contrast. Thus, the effectiveness of the proposed SR-LTA
feature can be verified.

The center-surround term is newly added in our formulation
(4) for the SR-LTA feature. Thereby, it is worth analyzing the im-
pact of the proposed center-surround term on saliency detection.



Fig. 7. Saliency maps of eight test images from Kienzle et al. database, output by our and other 9 methods as well human fixations. From left to right: Input images, human
fixation maps, our, BMS, Itti, Duan, GAFFE, Hou, Zhao, Judd, AWS and SALICON methods.

Fig. 8. Left: Saliency detection accuracy of our method alongside increased η. Right: Saliency detection accuracy of our methods using different weight functions. The
accuracy of saliency detection is measured by CC averaged over the DOVES database.

Fig. 9. Left: Saliency detection accuracy of our method using only salient or non-salient dictionary against using both dictionaries. Right: Performance of our method with
learnt or equal weights, as well as three single features. Note that the accuracy of saliency detection is measured by CC averaged over the DOVES database.
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We can see from (4) that parameter η controls the trade-off be-
tween the center-surround term and sparse representation term.
Fig. 8 demonstrates the performance of our method at various η.
As observed from this figure, η¼0.05 makes the saliency detection
accuracy highest. This figure thus guides us that parameter η
should be set to 0.05, and it also implies the positive effect of the
center-surround term on improving saliency detection accuracy in
our method. In addition, the center-surround term is based on the



Table 5
The saliency detection accuracy of test images with different noise levels and different intensity offsets on DOVES database, using our saliency detection method.

Noise levels σ( )n 0 10 20 30 50 Intensity offsets (▵ )I �20% –10% 0 10% 20%

CC 0.582 0.577 0.564 0.563 0.542 CC 0.582 0.583 0.582 0.582 0.583
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weight function proposed in (3). Hence, we further validate in
Fig. 8 the effectiveness of the proposed center-surround weight
function, by comparing to other Gaussian functions with different
standard deviations s. We can see from this figure that the pro-
posed weight function is effective in modeling the center-sur-
round term for bottom-up saliency detection, when compared
with Gaussian weight functions.

5.3.2. Analysis on learning performance
Now, we focus on the learning performance of our method

from two aspects. First, our OSDL algorithm includes the learning
of both salient and non-salient dictionaries in formulation (11).
Accordingly, Fig. 9 shows the performance of our method with
single salient/non-salient dictionary and with both two diction-
aries. We can see from this figure that the combination of salient
and non-salient dictionaries performs better than each single
dictionary for saliency detection. Second, our method learns to
integrate all features together. Thus, we investigate the effective-
ness of learnt weights obtained by (13) in feature integration. To
this end, we plot in Fig. 9 the saliency detection accuracy (in term
of CC) of our method with learnt weights and with equal weights.
We can see from this figure that CC increases from 0.561 to 0.582,
when using the learnt weights instead of equal weights in our
method. Thus, the effectiveness of learnt weights can be validated.

5.3.3. Analysis on robustness
Finally, we analyze the robustness of our method to image

noise and intensity offsets. Here, we follow the basic idea of [47–
49] to investigate the impact of image noise and intensity offsets
on saliency detection accuracy of our method. The results are re-
ported in Table 5. We can see from this table that the CC results of
our saliency detection method decrease along with increased
noise. However, even when the Gaussian noise is large (σ = 50n ),
our method has higher CC value (0.542) than other saliency de-
tection methods (the best one is 0.484 as seen in Table 4). More-
over, CC values are almost unchanged in our method, once the
illumination varies in test images. In a word, our method is robust
to image noise and intensity offsets. The investigation on the ro-
bustness of our method to other image effects, e.g., geometric
transformations, is a promising future work.
6. Conclusions

In this paper, we have proposed a learning based method with
a novel feature called SR-LTA, to predict saliency of gray images. In
the proposed method, an optimization formulation with a center-
surround term was proposed, for learning both salient and non-
salient dictionaries from the training fixation and non-fixation
patches. Then, the OSDL algorithm was developed to solve the
proposed optimization formulation, in light of online dictionary
learning. Here, the two learnt dictionaries are discriminative to
classify the salient and non-salient regions. Thus, the SR-LTA fea-
ture can be computed in our method, upon the difference between
sparse representation errors with respect to the salient and non-
salient dictionaries. At last, the saliency map of an input gray
image can be generated, via linearly combining conspicuity maps
of the proposed SR-LTA feature and two other conventional fea-
tures (luminance and contrast). For the linear combination, the
weight of each feature channel is determined by the least square
fitting on training data. Experimental results show that our
method advances the state-of-the-art bottom-up saliency
detection.

Our work in the current form only focuses on saliency detec-
tion of gray images. Thus, the future work should incorporate the
SR-LTA feature of our method into saliency detection of color
images. Moreover, the SR-LTA feature proposed in our method can
be seen as a bottom-up feature for saliency detection. Indeed, an
ideal saliency detection system, like the one of the HVS, requires
the combination of both bottom-up and top-down information
flow. Thus, the protocols, for integrating bottom-up and top-down
processes in saliency detection, show a promising research trend
in future.
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Appendix

Derivation from (8) to (9) in Section 3.2.
At first, the ℓ2 norm of (8) can be rewritten in the form of

matrix trace denoted as (·)tr . That is
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Note that only the j-th atom ′d j in ˜ ′D j t, is variable.
As ′d j is independent of ′xi , the derivative of (17) can be written

as
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where ′Bt and ′Ct have been defined as α α∑ ′ ′=i
t

i i
T

1 and α∑ ′ ′= xi
t

i i
T

1 ,
respectively.

According to the rules of derivative of matrix traces [50], we
can obtain

∂
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( )d

D B D D btr 2 ,
19j
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In above equations, ′b j t, and ′c j t, are the j-th columns of ′Bt and ′Ct .
Based on (19)–(21), the following holds:

∑ α η

η

∂
∂ ′
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Consequently, (8) can be rewritten by (9). This completes the de-
rivation from (8) to (9) in Section 3.2.
References

[1] L. Huo, L. Jiao, S. Wang, S. Yang, Object-level saliency detection with color
attributes, Pattern Recognit. 49 (2016) 162–173.

[2] D. Gao, S. Han, N. Vasconcelos, Discriminant saliency, the detection of suspi-
cious coincidences, and applications to visual recognition, IEEE Trans. Pattern
Anal. Mach. Intell. 31 (6) (2009) 989–1005.

[3] M. Rubinstein, D. Gutierrez, O. Sorkine, A. Shamir, A comparative study of
image retargeting, ACM Trans. Graph. 29 (6) (2010) 160:01–10.

[4] U. Engelke, H. Kaprykowsky, H. Zepernick, P. Ndjiki-Nya, Visual attention in
quality assessment, IEEE Signal Process. Mag. 28 (6) (2011) 50–59.

[5] M. Xu, X. Deng, S. Li, Z. Wang, Region-of-interest based conversational hevc
coding with hierarchical perception model of face, IEEE J. Sel. Top. Signal
Process. 8 (3) (2014) 475–489.

[6] A.M. Treisman, G. Gelade, A feature-integration theory of attention, Cognit.
Psychol. 12 (1) (1980) 97–136.

[7] C. Koch, S. Ullman, Shifts in selective visual attention: towards the underlying
neural circuitry, Matters Intell. 188 (1987) 115–141.

[8] L. Itti, C. Koch, E. Niebur, A model of saliency-based visual attention for rapid
scene analysis, IEEE Trans. Pattern Anal. Mach. Intell. 20 (11) (1998)
1254–1259.

[9] N. Bruce, J. Tsotsos, Saliency based on information maximization, in: Advances
in neural information processing systems (NIPS), 2005, pp. 155–162.

[10] J. Harel, C. Koch, P. Perona, Graph-based visual saliency, in: Advances in neural
information processing systems (NIPS), 2006, pp. 545–552.

[11] X. Hou, L. Zhang, Saliency detection: a spectral residual approach, in: Com-
puter Vision and Pattern Recognition (CVPR), 2007, pp. 1–8.

[12] L. Duan, C. Wu, J. Miao, L. Qing, Y. Fu, Visual saliency detection by spatially
weighted dissimilarity, in: Computer Vision and Pattern Recognition (CVPR),
2011, pp. 473–480.

[13] J. Zhang, S. Sclaroff, Saliency detection: a boolean map approach, in: Inter-
national Conference on Computer Vision (ICCV), 2013, pp. 153–160.

[14] L. Itti, C. Koch, Feature combination strategies for saliency-based visual at-
tention systems, J. Electron. Imaging 10 (1) (2001) 161–169.

[15] T. Judd, K. Ehinger, F. Durand, A. Torralba, Learning to predict where humans
look, in: International Conference on Computer Vision (ICCV), 2009, pp. 2106–
2113.

[16] Q. Zhao, C. Koch, Learning a saliency map using fixated locations in natural
scenes, J. Vision. 11 (3) (2011) 9.

[17] W. Kienzle, F.A. Wichmann, M.O. Franz, B. Schölkopf, A nonparametric
approach to bottom-up visual saliency, in: Advances in Neural Information
Processing Systems (NIPS), 2007, pp. 689–696.

[18] W. Kienzle, M.O. Franz, B. Schölkopf, F.A. Wichmann, Center-surround patterns
emerge as optimal predictors for human saccade targets, J. Vision 9 (5) (2009)
7.

[19] M. Cerf, J. Harel, W. Einhäuser, C. Koch, Predicting human gaze using low-level
saliency combined with face detection, in: In Advances in neural information
processing systems (NIPS), 2008, pp. 241–248.

[20] J. Mairal, F. Bach, J. Ponce, G. Sapiro, Online dictionary learning for sparse
coding, in: International Conference on Machine Learning (ICML), 2009, pp.
689–696.

[21] U. Rajashekar, I. Van Der Linde, A.C. Bovik, L.K. Cormack, Gaffe: a gaze-atten-
tive fixation finding engine, IEEE Trans. Image Process. 17 (4) (2008) 564–573.

[22] L. Jiang, M. Xu, Z. Ye, Z. Wang, Image saliency detection with sparse re-
presentation of learnt texture atoms, in: Proceedings of the IEEE International
Conference on Computer Vision Workshops, 2015, pp. 54–62.

[23] X. Huang, C. Shen, X. Boix, Q. Zhao, Salicon: reducing the semantic gap in
saliency prediction by adapting deep neural networks, in: Proceedings of the
IEEE International Conference on Computer Vision (ICCV), 2015, pp. 262–270.

[24] D. Walther, C. Koch, Modeling attention to salient proto-objects, Neural Netw.
19 (9) (2006) 1395–1407.

[25] D. Pang, A. Kimura, T. Takeuchi, J. Yamato, K. Kashino, A stochastic model of
selective visual attention with a dynamic bayesian network, in: Proceedings
of the International Conference on Multimedia and Expo (ICME), 2008, pp.
1073–1076.

[26] T. Avraham, M. Lindenbaum, Esaliency (extended saliency): meaningful at-
tention using stochastic image modeling, IEEE Trans. Pattern Anal. Mach. In-
tell. 32 (4) (2010) 693–708.

[27] Y. Li, Y. Zhou, J. Yan, Z. Niu, J. Yang, Visual saliency based on conditional en-
tropy, in: Asian Conference on Computer Vision (ACCV), 2009, pp. 246–257.

[28] W. Wang, Y. Wang, Q. Huang, W. Gao, Measuring visual saliency by site en-
tropy rate, in: Computer Vision and Pattern Recognition (CVPR), 2010, pp.
2368–2375.

[29] W. Hou, X. Gao, D. Tao, X. Li, Visual saliency detection using information di-
vergence, Pattern Recognit. 46 (10) (2013) 2658–2669.

[30] X. Hou, J. Harel, C. Koch, Image signature: highlighting sparse salient regions,
IEEE Trans. Pattern Anal. Mach. Intell. 34 (1) (2012) 194–201.

[31] J. Li, M.D. Levine, X. An, X. Xu, H. He, Visual saliency based on scale-space
analysis in the frequency domain, IEEE Trans. Pattern Anal. Mach. Intell. 35 (4)
(2013) 996–1010.

[32] J. Yan, M. Zhu, H. Liu, Y. Liu, Visual saliency detection via sparsity pursuit, IEEE
Signal Process. Lett. 17 (8) (2010) 739–742.

[33] Z. Ren, S. Gao, L.-T. Chia, D. Rajan, Regularized feature reconstruction for
spatio-temporal saliency detection, IEEE Trans. Image Process. 22 (8) (2013)
3120–3132.

[34] A. Garcia-Diaz, V. Leborán, X.R. Fdez-Vidal, X.M. Pardo, On the relationship
between optical variability, visual saliency, and eye fixations: a computational
approach, J. Vision 12 (6) (2012) 17.

[35] C. Xia, F. Qi, G. Shi, P. Wang, Nonlocal center-surround reconstruction-based
bottom-up saliency estimation, Pattern Recognit. 48 (4) (2015) 1337–1348.

[36] V. Navalpakkam, L. Itti, Search goal tunes visual features optimally, Neuron 53
(4) (2007) 605–617.

[37] W. Kienzle, B. Schölkopf, F.A. Wichmann, M.O. Franz, How to find interesting
locations in video: a spatiotemporal interest point detector learned from hu-
man eye movements, in: Proceedings of the International Conference on
Pattern Recognition (ICPR), 2007, pp. 405–414.

[38] M. Kümmerer, L. Theis, M. Bethge, Deep gaze i: Boosting saliency prediction
with feature maps trained on imagenet, ICLR workshop, 2014, pp. 1–8.

[39] I. Van Der Linde, U. Rajashekar, A.C. Bovik, L.K. Cormack, Doves: a database of
visual eye movements, Spat. Vision 22 (2) (2009) 161–177.

[40] S.S. Kruthiventi, K. Ayush, R.V. Babu, Deepfix: a fully convolutional neural
network for predicting human eye fixations, arXiv preprint arxiv:1510.02927.

[41] R. Rubinstein, A.M. Bruckstein, M. Elad, Dictionaries for sparse representation
modeling, Proc. IEEE 98 (6) (2010) 1045–1057.

[42] J. Mairal, F. Bach, J. Ponce, G. Sapiro, A. Zisserman, Discriminative learned
dictionaries for local image analysis, in: Computer Vision and Pattern Re-
cognition (CVPR), 2008, pp. 1–8.

[43] B. Efron, T. Hastie, I. Johnstone, R. Tibshirani, et al., Least angle regression, Ann.
Stat. 32 (2) (2004) 407–499.

[44] C.E. Metz, Basic principles of roc analysis, in: Seminars in nuclear medicine,
Vol. 8, Elsevier, 1978, pp. 283–298.

[45] A. Borji, L. Itti, State-of-the-art in visual attention modeling, Pattern Anal.
Mach. Intell. IEEE Trans. 35 (1) (2013) 185–207.

[46] Salicon demo, 〈http://salicon.net/demo/〉.
[47] B.-K. Bao, G. Zhu, J. Shen, S. Yan, Robust image analysis with sparse re-

presentation on quantized visual features, Image Process. IEEE Trans. 22 (3)
(2013) 860–871.

[48] R. Maani, S. Kalra, Y.-H. Yang, Robust edge aware descriptor for image
matching, in: Computer Vision–ACCV 2014, Springer, 2014, pp. 553–568.

[49] N. Anantrasirichai, J. Burn, D.R. Bull, Robust texture features based on un-
decimated dual-tree complex wavelets and local magnitude binary patterns,
in: Image Processing (ICIP), 2015 IEEE International Conference on, IEEE, 2015,
pp. 3957–3961.

[50] J.R. Magnus, H. Neudecker, Matrix Differential Calculus, Wiley, New York,
1988.

http://refhub.elsevier.com/S0031-3203(16)30107-8/sbref1
http://refhub.elsevier.com/S0031-3203(16)30107-8/sbref1
http://refhub.elsevier.com/S0031-3203(16)30107-8/sbref1
http://refhub.elsevier.com/S0031-3203(16)30107-8/sbref2
http://refhub.elsevier.com/S0031-3203(16)30107-8/sbref2
http://refhub.elsevier.com/S0031-3203(16)30107-8/sbref2
http://refhub.elsevier.com/S0031-3203(16)30107-8/sbref2
http://refhub.elsevier.com/S0031-3203(16)30107-8/sbref3
http://refhub.elsevier.com/S0031-3203(16)30107-8/sbref3
http://refhub.elsevier.com/S0031-3203(16)30107-8/sbref4
http://refhub.elsevier.com/S0031-3203(16)30107-8/sbref4
http://refhub.elsevier.com/S0031-3203(16)30107-8/sbref4
http://refhub.elsevier.com/S0031-3203(16)30107-8/sbref5
http://refhub.elsevier.com/S0031-3203(16)30107-8/sbref5
http://refhub.elsevier.com/S0031-3203(16)30107-8/sbref5
http://refhub.elsevier.com/S0031-3203(16)30107-8/sbref5
http://refhub.elsevier.com/S0031-3203(16)30107-8/sbref6
http://refhub.elsevier.com/S0031-3203(16)30107-8/sbref6
http://refhub.elsevier.com/S0031-3203(16)30107-8/sbref6
http://refhub.elsevier.com/S0031-3203(16)30107-8/sbref7
http://refhub.elsevier.com/S0031-3203(16)30107-8/sbref7
http://refhub.elsevier.com/S0031-3203(16)30107-8/sbref7
http://refhub.elsevier.com/S0031-3203(16)30107-8/sbref8
http://refhub.elsevier.com/S0031-3203(16)30107-8/sbref8
http://refhub.elsevier.com/S0031-3203(16)30107-8/sbref8
http://refhub.elsevier.com/S0031-3203(16)30107-8/sbref8
http://refhub.elsevier.com/S0031-3203(16)30107-8/sbref9
http://refhub.elsevier.com/S0031-3203(16)30107-8/sbref9
http://refhub.elsevier.com/S0031-3203(16)30107-8/sbref9
http://refhub.elsevier.com/S0031-3203(16)30107-8/sbref10
http://refhub.elsevier.com/S0031-3203(16)30107-8/sbref10
http://refhub.elsevier.com/S0031-3203(16)30107-8/sbref11
http://refhub.elsevier.com/S0031-3203(16)30107-8/sbref11
http://refhub.elsevier.com/S0031-3203(16)30107-8/sbref11
http://refhub.elsevier.com/S0031-3203(16)30107-8/sbref12
http://refhub.elsevier.com/S0031-3203(16)30107-8/sbref12
http://refhub.elsevier.com/S0031-3203(16)30107-8/sbref12
http://refhub.elsevier.com/S0031-3203(16)30107-8/sbref13
http://refhub.elsevier.com/S0031-3203(16)30107-8/sbref13
http://refhub.elsevier.com/S0031-3203(16)30107-8/sbref13
http://refhub.elsevier.com/S0031-3203(16)30107-8/sbref14
http://refhub.elsevier.com/S0031-3203(16)30107-8/sbref14
http://refhub.elsevier.com/S0031-3203(16)30107-8/sbref14
http://refhub.elsevier.com/S0031-3203(16)30107-8/sbref14
http://refhub.elsevier.com/S0031-3203(16)30107-8/sbref15
http://refhub.elsevier.com/S0031-3203(16)30107-8/sbref15
http://refhub.elsevier.com/S0031-3203(16)30107-8/sbref15
http://refhub.elsevier.com/S0031-3203(16)30107-8/sbref16
http://refhub.elsevier.com/S0031-3203(16)30107-8/sbref16
http://refhub.elsevier.com/S0031-3203(16)30107-8/sbref16
http://refhub.elsevier.com/S0031-3203(16)30107-8/sbref17
http://refhub.elsevier.com/S0031-3203(16)30107-8/sbref17
http://refhub.elsevier.com/S0031-3203(16)30107-8/sbref17
http://refhub.elsevier.com/S0031-3203(16)30107-8/sbref17
http://refhub.elsevier.com/S0031-3203(16)30107-8/sbref18
http://refhub.elsevier.com/S0031-3203(16)30107-8/sbref18
http://refhub.elsevier.com/S0031-3203(16)30107-8/sbref18
http://refhub.elsevier.com/S0031-3203(16)30107-8/sbref19
http://refhub.elsevier.com/S0031-3203(16)30107-8/sbref19
http://refhub.elsevier.com/S0031-3203(16)30107-8/sbref19
http://refhub.elsevier.com/S0031-3203(16)30107-8/sbref19
http://refhub.elsevier.com/S0031-3203(16)30107-8/sbref20
http://refhub.elsevier.com/S0031-3203(16)30107-8/sbref20
http://refhub.elsevier.com/S0031-3203(16)30107-8/sbref20
http://refhub.elsevier.com/S0031-3203(16)30107-8/sbref21
http://refhub.elsevier.com/S0031-3203(16)30107-8/sbref21
http://refhub.elsevier.com/S0031-3203(16)30107-8/sbref21
http://refhub.elsevier.com/S0031-3203(16)30107-8/sbref22
http://refhub.elsevier.com/S0031-3203(16)30107-8/sbref22
http://refhub.elsevier.com/S0031-3203(16)30107-8/sbref22
http://refhub.elsevier.com/S0031-3203(16)30107-8/sbref23
http://refhub.elsevier.com/S0031-3203(16)30107-8/sbref23
http://refhub.elsevier.com/S0031-3203(16)30107-8/sbref23
http://arxiv:1510.02927
http://refhub.elsevier.com/S0031-3203(16)30107-8/sbref24
http://refhub.elsevier.com/S0031-3203(16)30107-8/sbref24
http://refhub.elsevier.com/S0031-3203(16)30107-8/sbref24
http://refhub.elsevier.com/S0031-3203(16)30107-8/sbref25
http://refhub.elsevier.com/S0031-3203(16)30107-8/sbref25
http://refhub.elsevier.com/S0031-3203(16)30107-8/sbref25
http://refhub.elsevier.com/S0031-3203(16)30107-8/sbref26
http://refhub.elsevier.com/S0031-3203(16)30107-8/sbref26
http://refhub.elsevier.com/S0031-3203(16)30107-8/sbref26
http://salicon.net/demo/
http://refhub.elsevier.com/S0031-3203(16)30107-8/sbref27
http://refhub.elsevier.com/S0031-3203(16)30107-8/sbref27
http://refhub.elsevier.com/S0031-3203(16)30107-8/sbref27
http://refhub.elsevier.com/S0031-3203(16)30107-8/sbref27
http://refhub.elsevier.com/S0031-3203(16)30107-8/sbref28
http://refhub.elsevier.com/S0031-3203(16)30107-8/sbref28


M. Xu et al. / Pattern Recognition 60 (2016) 348–360360
Mai Xu received the B.S. degree from Beihang University in 2003, the M.S. degree f
rom TsinghuaUniversity in 2006 and the Ph.D. degree from Imperial College London in
2010. From 2010 to 2012, he was working as a research fellow at the Electrical Engineering Department, Tsinghua University. Since Jan. 2013, he has been with Beihang
University as an Associate Professor. His research interests mainly include visual communication and image processing. He has published more than 40 technical papers in
international journals and conference proceedings.
Lai Jiang received her B.S. degree in electronic engineering from Beihang University, Beijing, China, in June 2015. He is currently a postgraduate student of Beihang University.
His research interests include saliency detection and computer vision.
Zhaoting Ye is now undergraduate student of Beihang University. His research interests include image processing.
Zulin Wang received the B.S. and M.S. degrees in electronic engineering from Beihang University, in 1986 and 1989, respectively. He also received his Ph.D. degree at the
same university in 2000. He is currently the dean of school of electronic and information engineering, at Beihang University, Beijing, China. His research interests include
image processing, video coding, high-speed signal processing, electromagnetic countermeasure,complex object test, and satellite communications technology. He is author
or co-author of over 100 papers and holds 6 patents, as well as published 2 books in these fields. He has undertaken approximately 30 projects related to image/video coding,
wireless communication, etc. Now he has taught “image signal processing” course to undergraduates and “digital signal processing” course to postgraduates for nearly one
decade. He is also the expert of China 863 program and the independent director of China Electronic Limited by Share Ltd.


	Bottom-up saliency detection with sparse representation of learnt texture atoms
	Introduction
	Related work
	Biologically inspired saliency detection
	Learning based saliency detection
	Learning parameters for saliency detection
	Learning bottom-up features for saliency detection
	Learning semantic features for saliency detection


	Dictionary learning for salient and non-salient texture atoms
	Dictionary leaning formulation
	Solution to the dictionary learning formulation

	Saliency detection with the features regarding learnt texture dictionaries
	The SR-LTA feature
	Saliency detection with SR-LTA feature

	Experimental results
	Experimental setup
	Database
	Training patches
	Parameter setting

	Comparison
	ROC curves and AUC
	NSS and CC
	χ2 distance
	Saliency maps
	Computational time

	Performance analysis
	Analysis on feature effectiveness
	Analysis on learning performance
	Analysis on robustness


	Conclusions
	Conflict of interest
	Acknowledgements
	Appendix
	References




