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Abstract—In this paper, we propose a region-of-interest (ROI)
based HEVC coding approach for conversational videos, with
a novel hierarchical perception model of face (HP model), to
improve the perceived visual quality of state-of-the-art HEVC
standard. In contrast to the previous ROI-based video coding
approaches, this novel HP model allows the unequal importance
of facial features (e.g., the eyes and mouth) within the facial
region, by generating a pixel-wise weight map. Benefitting from
such a perception model, the adaptive coding tree unit (CTU) par-
tition structure is developed to alleviate the encoding complexity
of HEVC, without any degradation of the visual quality in facial
regions, especially in the regions of facial features. Subsequently,
for the rate control in HEVC a weight-based unified rate-quan-
tization (URQ) scheme, instead of the conventional pixel-based
URQ scheme, is proposed to adaptively adjust the value of quan-
tization parameter (QP). Such an adaptive adjustment of QPs
is capable of allocating more bits to the face/facial features with
respect to our HP model, and as a result, the visual quality of
face, in particular facial features, can be enhanced for conversa-
tional HEVC coding. Finally, the experimental results show that
the perceived visual quality of our approach is greatly improved,
with even less encoding time, for conversational video coding on
the HEVC platform.

Index Terms—HEVC, perceptual video compression, teleconfer-
encing, rate distortion.

I. INTRODUCTION

N OWADAYS, plenty of conversational video products,
such as FaceTime, are flooding into our lives, facilitating

the visual communications for humans. On the other hand, the
past decade has witnessed a great evolution of ever-increasing
video resolutions and screen display sizes. Accordingly, the
conversational videos, in particular at high resolutions, are
causing the bandwidth bottleneck. Fortunately, High Efficiency
Video Coding (HEVC) standard [1], also called H.265, has
been formally established, to provide higher compression
efficiency for supporting such bandwidth-hungry applications.
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With the flexible picture partition, parallel coding and some
other cutting-edge techniques, HEVC has eminent compres-
sion performance, much better than the preceding H.264/AVC
standard [2].
Nevertheless, high resolution video delivery, especially to

meet low bit-rates of mobile devices, still poses the great chal-
lenging problem of compression efficiency for HEVC. In fact,
there still remains much perceptual redundancy in HEVC, since
human attentions do not focus on the whole scene, but only a
small region of fixation called region-of-interest (ROI) region.
For example, it has been found out in [3] that humans normally
perceive clearly a small region of 2–5 of the visual angle.
Thereby, perceptual video coding [4] provides an efficient so-
lution towards lower bit-rate video coding, which keeps accept-
able distortion in ROI regions, but at the expense of some visual
quality degradation in non-ROI regions.
Recently, there has been a growing interest in perceptual

video coding [5]–[7]. More specifically, Lee and Bovik [5]
proposed to use an eye tracker to obtain the fixation points
as ROI regions, for the earlier H.263 standard. However, it is
impractical to have the eye tracker available during the video
encoding process. Automatic ROI region extraction, based
on the perception model of human visual system (HVS), is
thus the key issue for perceptual video coding. Intuitively,
the important cue for the perception model in conversational
video coding is extracting faces as ROI regions. Then, a per-
ceptual rate control scheme [6] was proposed to reduce the
quantization parameter (QP) values of skin regions in H.263,
with a block-wise sensitive weight map of the conversational
scene. Afterwards, a novel resource allocation method [7]
was proposed for H.264/AVC standard to optimize the subjec-
tive rate-distortion-complexity performance of conversational
video coding, by improving the visual quality of facial regions
exploited with the skin-tone algorithm [8]. Unfortunately,
to our best knowledge, the existing perceptual video coding
approaches have yet to be sophistically developed for the latest
HEVC standard. Besides, most of these approaches merely
focus on low resolution videos, such as CIF videos (resolution:
352 288), and they are not specifically designed for high res-
olution videos. In general, the existing perceptual approaches
on video coding are neither suitable for the HEVC standard nor
the video services with high resolutions.
In this paper, we propose a novel perceptual approach for con-

versational HEVC coding, in order to improve its perceived vi-
sual quality, especially at high resolutions. On one hand, as seen
from Fig. 1, the number of pixels representing each facial fea-
ture, such as eyes and mouth, in an HD video is comparable with
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Fig. 1. (a) and (b): The original conversational video sequences of Akiyo and
Yan (only showing one random frame) with the resolutions being 352 288
and 1920 1080, respectively. (c): The face (4810 pixels) detected from (a).
(d): The face (99896 pixels) obtained from (b). (e): The eyes (58 pixels), nose
(248 pixels) and mouth (241 pixels) extracted from (a). (f): The eyes (1828
pixels), nose (5186 pixels) and mouth (4508 pixels) extracted from (b). Note
that the face and facial features are extracted using the method of Section III-B.
(a) Akiyo (CIF), (b) Yan (1080p HD), (c) Extracted face of CIF video, (d) Ex-
tracted face of HD video, (e) Extracted facial features of CIF video, (f) Extracted
facial features of HD video.

that representing the whole face in a CIF video. On the other
hand, it is intuitive that the facial features are the noticeable re-
gions in a face to attract human attentions. It is thus desirable
that the visual quality of facial features is superior to other ROI
regions in conversational HEVC coding. However, we find out
that the rate-distortion performance of the regions of facial fea-
tures, compressed by HEVC, is even worse than other regions.
To overcome such a drawback, in addition to the enhancement
of facial quality, the proposed approach in this paper further im-
proves the visual quality of facial features for conversational
HEVC coding.
The basic philosophy of this paper is twofold: (1) The

pixel-wise weight maps of conversational video are yielded,
constrained by a hierarchical perception model of face (HP
model); (2) coding tree unit (CTU) structure and QPs are then
adaptively adjusted on the basis of the pixel-wise weight maps,
to allow the unequal importance during video coding. The main
contributions of this paper are listed in the following.
• We analyze the rate-distortion performance of conversa-
tional HEVC coding in the regions of background, face,

and facial features, for illustrating the necessity of our
work. Then, we propose an HP model, which indicates the
unequal importance of facial features, non-facial-features,
and background1 with a pixel-wise weight map. Towards
such a perception model, an extraction method of face and
facial features is presented in light of the face alignment
algorithm [9].

• We develop an adaptive CTU partition structure to reduce
encoding complexity of conversational HEVC coding.
Intrinsically, the CTU partition structure introduced by
HEVC improves the rate-distortion performance, but at
the cost of computational complexity. In our approach,
given the pixel-wise weight maps, the CTUs of facial
regions have to be partitioned in details through setting
large maximum depths for largest coding units (LCU), to
maintain the perceived visual quality. Then, rough parti-
tions are applied to other CTUs with small maximum LCU
depths, thus reducing a great deal of encoding complexity
in HEVC.

• We propose a rate control scheme using the pixel-wise
weight maps upon our HP model. Generally speaking, the
core of our scheme is to allocate more bits to ROI re-
gions, i.e., face and facial features, by utilizing the weight-
based unified rate-quantization (URQ) scheme, instead of
the conventional pixel-based URQ scheme. Beyond, the
perceived visual quality of conversational HEVC coding
can be improved, with the visual quality of ROI regions
enhanced at different levels according to the pixel-wise
weight maps.

The outline of this paper is given as follows. In Section II,
we briefly review the previous work on perceptual video
coding. In Section III, the details of the proposed HP model
are discussed. Based on Section III, Section IV develops an
adaptive CTU partition structure for HEVC, which is capable
of decreasing its encoding complexity. Afterwards, Section V
proposes a weight-based URQ scheme to improve the visual
quality of ROI regions in conversational HEVC coding. Finally,
Section VI shows some experimental results and Section VII
concludes this paper.

II. PREVIOUS WORK

For several years, there has been a great deal of interest in
perceptual video coding [4]. Generally speaking, the main idea
of perceptual video coding is increasing the coding efficiency
via removing the perceptual redundancy. That is, it imposes
high priority on ROI regions while allowing more distortion
in non-ROI regions. Therefore, the perceptual video coding in-
volves two major parts: perception model with ROI regions and
video coding implementation upon the ROI regions.
For the perception model, many methods have emerged in

perceptual video coding. At the beginning, human-machine in-
teraction methods [5], [10]–[12] were adopted to obtain ROI
regions for the perception model of video coding. For example,
in 1990s, Kortum and Geisler [10] developed a real-time multi-
resolution system, which utilizes an eye tracker to record the

1Non-facial-features are defined as the regions of face excluding the facial
features. Background, as non-facial-regions, is defined as the regions of whole
scene except the face.
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foveation points of a human observer on the receiver and then
applies a corresponding foveation filter in video coding of the
sender. Later, several advanced approaches on using the eye
tracker for video coding have been proposed [5], [11], [12].
However, it is hard to implement such approaches due to the
fact that an eye-tracking apparatus is normally unavailable at
the receiver. From the perspective of psychology, many ap-
proaches on the perception model for video coding [13]–[16]
have been proposed to predict which regions in a video can at-
tract human attentions, according to HVS mechanisms. A rep-
resentative work is the saliency-based attention prediction [15],
in light of Itti-Koch attention model [17], for detecting ROI re-
gions in perceptual video coding. Such an approach produces a
guidance map to locate ROI regions with the top salient values
in a video, and on the basis of the guidance map, a bit alloca-
tion scheme varies the QP value of each block for video coding.
Since the study on HVS is still in progress, it is rather diffi-
cult to incorporate the HVS mechanisms into perceptual video
coding. Evidently, human face is an important cue [18] for per-
ceptual video coding, especially under conversational scenarios.
Thereby, many approaches [6], [7], [19]–[21] define faces as the
ROI regions for conversational video coding. Actually, this kind
of perceptionmodel is very effective in conversational video ap-
plications, as it benefits from the recent success of face detec-
tion [22] in computer vision community. However, the above
perception model does not consider the facial features as more
important regions, and these facial features in HD conversa-
tional videos usually take up a great number of pixels. In order to
achieve better perceived visual quality, these facial features, in
particular for HD videos, need to be endowed more importance.
For video coding implementation, the previous approaches

were developed in dichotomy: either pre-processing or
embedded encoding. Preprocessing approaches [10], [16],
[23]–[25] are straightforward, as they directly reduce the unim-
portant information of input video by applying a non-uniform
distortion filter in a scene. For example, [16] divides a scene
into foreground and background, and then the background, as
the non-ROI region, is blurred with a filter (i.e., more distor-
tion is imposed) to save some bits for video coding. Besides,
imitating human vision, a foveation filter was applied in [23]
to increase the blurring effect along with the distance between
the considered pixel and the eye fixation point. Obviously,
the advantage of the preprocessing approaches is that they are
independent of the existing video coding standards and they
are thus easily applied. However, these approaches introduce
the blurring effects in non-ROI regions, which produce the
obvious degradation of visual quality in those regions. Em-
bedded encoding approaches [6], [7], [19], [26], [27] have
been developed to increase the bit allocation in ROI regions by
reducing their corresponding QP values, thereby improving the
perceived visual quality of video coding. For the earlier H.261
standard, two quantizers were developed in [19]. The facial
regions, as ROI regions, are allocated more target bits through
adjusting these two quantizers. For H.263, a perceptual rate
control scheme [6] was proposed, in combination with the local
perceptual cues, to improve the visual quality of skin regions
in a conversational video. For H.264/AVC, a novel source
allocation method [7] was proposed to enhance the subjective

rate-distortion-complexity performance of conversational video
coding. However, to our best knowledge, there is no perceptual
encoding implementation for the latest HEVC standard [1].
In this paper, we propose an approach on perceptual video

coding, embedded on the state-of-the-art HEVC standard. Such
an approach is based on a novel HP model, and it is capable of
improving the visual quality of ROI regions (including facial
features and non-facial-features) to obtain better perceived vi-
sual quality, with even less encoding complexity.

III. HIERARCHICAL PERCEPTION MODEL OF FACE

The study on perceptual mechanisms of HVS has a long way
to go yet. It is still intractable to precisely identify the ROI re-
gions for perceptual video coding. Fortunately, we have an im-
portant cue for the perception model in conversational video
coding, i.e., considering the face as ROI regions. First, we in-
vestigate in Section III-A the rate-distortion performance of dif-
ferent regions in conversational HEVC coding. With the inves-
tigation results, we argue that the HPmodel is indeed necessary.
In Section III-B, we propose an HP model, which is in accord
with the perceptual mechanisms of HVS. At last, pixel-wise
weight maps are generated to impose the unequal importance
on each pixel in a conversational video.

A. The Necessity of Hierarchical Perception Model of Face

Admittedly, HEVC, as the latest video coding standard, has
improved rate-distortion performance a lot in comparison with
the preceding H.264/AVC. However, it still has some undesir-
able defects. In fact, HEVC adopts a similar coding structure
as H.264/AVC. This results in a challenge resembling H.264/
AVC, that is the ill-suited bit-allocation problemwhichmay lead
to unsatisfactory visual perception performance. It is therefore
worth investigating the visual quality of different regions in con-
versational HEVC coding.
Here, we tested the rate-distortion characteristic of the

conversational HEVC coding on four conversational video
sequences2: Akiyo (CIF), Foreman (CIF), Simo (1080P HD),
and Yan (1080P HD). We applied HM 9.0 software [28] of
HEVC to compress each video sequence, using the default
pixel-based URQ scheme [29] for rate control. The parameter
settings are to be presented in Section VI-A. In addition, the
algorithm for automatic extraction of face and facial features
is to be presented in Section III-B. Examples of the extraction
results can be seen in Fig. 1.
Now, we examine the changes of Y-PSNRs under a range

of bit-rates to investigate the rate-distortion performance of
HEVC. Since the regions of face, especially facial features,
usually attract most of human attentions, they are the key
regions for investigation. The average Y-PSNRs of the whole
region, background, face, and facial features at various bit-rates
are plotted in Fig. 2. As can be seen there, it is obvious that the
average Y-PSNRs of face are smaller than those of the whole
region and background for nearly all video sequences at dif-
ferent bit-rates, except the Foreman sequence at high bit-rates.
This result reveals the necessity of the previous work on the

2Since there is no standard HD conversational video sequence available, we
captured four raw HD video sequences using the method described in Sec-
tion VI-A.
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Fig. 2. The rate-distortion performance of the whole region, background, face, nose, eyes and mouth for four conversational videos compressed by HEVC with
its default pixel-based URQ scheme for rate control. (a) Akiyo (CIF), (b) Foreman (CIF), (c) Yan (1080p HD), (d) Simo (1080p HD).

perceptual video coding [6], [7]. It can be further observed
from Fig. 2 that the average Y-PSNRs of the eyes and mouth
are much lower than the face/whole region. Such results trigger
our work on the HP model, which further splits the facial region
into several subregions (e.g., the eyes and mouth) and then
assigns unequal importance weights to them.

B. The Proposed Hierarchical Perception Model of Face

From now on, we mainly focus on the HP model. As afore-
mentioned, it is necessary to further decompose face into several
facial features and non-facial-features. Note that non-facial-fea-
tures are defined as the regions of face excluding the facial fea-
tures. Towards such a decomposition, the face and its facial fea-
tures can be extracted using the procedure of Fig. 3. As shown in
this figure, after face detection [22], several key feature points
are located in the video by combining the local detection and
global optimization together. Next, the contours of the face and
its facial features are achieved via connecting the related fea-
ture points. Finally, the regions of the face and facial features
are extracted upon their contours. Indeed, the detection of fea-
ture points is a key issue for extracting the regions of face and
facial features. Benefiting from the most recent success on com-
puter vision, we employ a real-time face alignment method [9]
to track the feature points in face. An example of the detection
results can be seen in Fig. 3. In the following, we briefly review
the work of the face alignment method [9].
For global optimization, the point distribution model (PDM)

of key feature points needs to be coined before tracking these

points in a video. Assume that is the set of 2D coor-
dinates of each key feature point. Then, the PDM is able to pa-
rameterize the deformable face on the basis of mean positions

by

(1)

with the parameters of scale , rotation , translation , and
a set of non-rigid parameters . In (1), is the set of
candidates of non-rigid facial variation. Seeing the PDM of (1)
as the prior, we can select the key feature points from PDM to
favor the locally detected feature points in each video frame,
using the least-square fit:

(2)

where denotes the coordinates of the th feature point output
by the local feature detector. can be obtained via mean-shift
algorithm [30]. After iterating over mean-shifted update (com-
puting ) and PDM parameterization (computing ) until con-
vergence, feature points can be finally output. For more
details, see [9]. In this paper, we utilize 66-point PDM [9] to
extract the contours of face and facial features. See Fig. 3 for
an example. As seen from this figure, the 66-point PDM can
well sample the key points of face and facial features, and ac-
cordingly these points can be connected to precisely extract the
contours and regions for face and facial features. Therefore, the
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Fig. 3. Overall procedure developed for face and facial feature extraction.

Fig. 4. The proposed hierarchical perception model of face for the conversa-
tional video.

66-point PDM is applied in our approach to extract face and fa-
cial features.
Next, based on the extracted face and facial features, the HP

model is developed, as illustrated in Fig. 4. It can be seen from
this figure that the whole region of each conversational video
frame is decomposed hierarchically into several subregions, be-
longing to three perceptual layers. In this hierarchy, the back-
ground and face are separated at the second layer. Different from
the conventional approaches [6], [7], the face is further decom-
posed into several facial features and non-facial-features at the
third layer. Moreover, each node in Fig. 4 is associated with
a weight for its importance. The values of importance weights
of nodes are determined by HVS and the rate-distortion perfor-
mance of different regions compressed by HEVC. To be more
specific, the study of HVS [31] has shown that the eyes and
mouth, in particular eyes, attract much more eye fixation points
than nose and non-facial-features, when humans look at a con-
versational scene. Besides, we also used a Tobii T60 eye tracker
to identify eye fixation points over several conversional video

Fig. 5. The pixel-wise weight map for Fig. 1-(b).

clips, and we recorded the eye fixation points of 12 observers
over 18 conversational video clips, with 30 seconds per video
clip. From the recorded results, we can see that nose and non-fa-
cial-features draw similar amount of human attentions, much
less than eyes and mouth3. However, the visual quality of eyes
and mouth is inferior in comparison with nose and non-facial-
features, as presented in the above subsection. Therefore, zero
weight is set for nose and non-falcial-features, and larger weight

is assigned to eyes and mouth.
Then, HPmodel is worked out to obtain the pixel-wise weight

map, which indicates the varying importance of different re-
gions in a conversational scene. In the HP model, each pixel in a
video frame falls into one leaf node, and the importance weight

3We have put the detailed eye-tracking results online: http://www.ee.buaa.
edu.cn/xumfiles.
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Fig. 6. Example of CTU partition structure, which divides an LCU (size: 64 64) into several CUs with different sizes. Note that in (a), (b), (c), and (d) each block
indicates a CU and the number inside a block stands for its depth. (a) Maximum depth: 0/1/2/3, (b) Maximum depth: 1/2/3, (c) Maximum depth: 2/3, (d) Maximum
depth: 3.

of a pixel can be computed by summing up the weights of its
leaf node and all the corresponding root nodes. For example, if
a pixel belongs to nose, the weight of its leaf node is 0 and the
weights of its root nodes, i.e., face at layer 2 and whole region at
layer 1, are both 1. Therefore, the weight of the pixel belonging
to nose is 2. This way, the pixel-wise weight map can be pro-
duced using the HP model upon the extracted face and facial
features. We assume that the weights are in a weight
map for a video frame with pixels. Here, one example of the
pixel-wise weight map is shown in Fig. 5 (the upper one).
Finally, according to HVS [15], the pixel-wise weight map

can be refined via introducing Gaussian model (GM) to the
weights of pixels around eye fixation point, i.e., regions with
large weights. We define as the distance of th pixel to the
edge of the nearest facial feature (but not falling into it). As-
sume that is the weight of the node for the th facial feature4

in the HP model; is the standard deviation for the decay of
around contour of the th facial feature. Then, the weights of

pixels around each facial feature can be updated with GM, by
adding the following Gaussian increment:

(3)

into their original weights. Note that only weights of the pixels
around eyes and mouth are updated, due to their corresponding

. After GM refining, the pixel-wise weight map can be
output and then used for the ROI-based video coding discussed
in the following sections. Fig. 5 (the bottom one) shows an ex-
ample of the pixel-wise map refined by GM.

IV. ROI-BASED ADAPTIVE CTU PARTITION
STRUCTURE FOR HEVC

In this section, we present a novel ROI-based adaptive CTU
partition structure for HEVC, based on the HP model above.
In Section IV-A, we first review the conventional CTU parti-
tion structure employed in HEVC, as the foundation of the pro-
posed adaptive CTU partition structure. Then, in Section IV-B,
we provide the detailed information about the ROI-based adap-
tive CTU partition structure.

A. The CTU Partition Structure in HEVC

One of themost significant contributions in HEVC is the CTU
partition structure. It has been pointed out [32] that the size of
16 16macroblocks in H.264/AVC standard is toomonotonous

4In Fig. 4, represents eyes node: represents mouth
node: represents nose node: .

Fig. 7. The procedure of subdividing an LCU into CUs with different depths.
Note that the “further split” is conducted on the CUs from the last splitting.

to adapt to video content at different resolutions, which may
contain large smooth areas or small specific details. By contrast,
the CTU partition structure of HEVC can offer more flexible
block sizes, ranging from 64 64 to 8 8, thus suitable for both
smooth and detailed regions. To be more specific, there are four
splitting depths in HEVC, i.e., from 0 to 3, for dividing an LCU
into several coding units (CUs) at different levels. In each LCU,
four equally sized CUs may be recursively partitioned with dif-
ferent depths. Then, each CU can be used as the basic unit for
both intra-coding and inter-coding. An example of splitting an
LCU into CUs with different sizes is shown in Fig. 6. From this
figure, it can be seen that even though the LCU is allowed to be
divided into small CUs given the same maximum depth, not all
of them can go there. The determination process of LCU split-
ting is shown in Fig. 7. From this figure, it can be seen that an
LCU can be divided into CUs at different depths. The condition
for further splitting is that the rate-distortion cost of the current
CU is larger than the sum of the cost of its four split CUs. Only
the CUs satisfying such a condition can be further split to reach
a larger depth. Note that the maximum depth of an LCU may be
achieved after several iterations of further splitting.
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The CTU partition structure is capable of improving the rate-
distortion performance of HEVC, owing to the flexible block
partition, as discussed above. However, it consumes an enor-
mous amount of computational time when splitting each LCU
into CUs, because of the computation on the rate-distortion cost
of each possible CU. Fortunately, HEVC offers the optional set-
ting of the maximum LCU depth, to which the depths of all CUs
cannot exceed. This may significantly reduce encoding com-
plexity. For instance, only the partitions of Fig. 6(a) and (b) are
allowed once the maximum LCU depth is chosen to be 1. Then,
only the first two splitting steps of Fig. 7 need to be conducted
in CTU partition structure, thus gaining a great deal of encoding
time.
In fact, most of the time, the maximum LCU depth does

not need to be very large, especially for non-ROI regions.
According to the HVS, the detailed information is not neces-
sary in non-ROI regions. Whether the depth is large or small
for CUs in non-ROI regions, therefore, has little effect on the
whole perceived visual quality, while small depth is able to
save a lot of computational time. We may make constraint on
the maximum LCU depths in non-ROI regions to reduce the
encoding complexity. We discuss the specific algorithm by
proposing our ROI-based adaptive CTU partition structure in
the next subsection.

B. The Proposed ROI-Based Adaptive CTU Partition Structure

As aforementioned, one feasible way to reduce the encoding
complexity of conversational HEVC coding is assigning dif-
ferent maximum depths to the LCUs of different regions, ac-
cording to their relative importance. In other words, the less im-
portant the LCU is, the smaller depth it is assigned with. It has
been previously discussed that the pixel with larger weight im-
plies that it is relatively more important. Here, we define by
the average weight of the th LCU, and it can be calculated on
the basis of the weight map of Section III-B using

(4)

where means the set of pixel indices in the th LCU of a
video frame, and is the number of pixels in the LCU.
After calculating the values of for all LCUs of a

video frame, their maximum depths can be obtained
with the following equation:

.
(5)

In (5), and are the thresholds that determine the maximum
depth of each LCU in accordance with its average weight. These
two thresholds imply the trade-off between the computational
complexity and visual quality. For instance, the great values of
thresholds and may reduce the computational complexity
as for most LCUs falls into 1 or 2. However, the small values
of lead to the rough CTU partition structure, and it is possible
to cause the quality degradation, even in the vital regions of
facial features.
Here, we show in Fig. 8 an example for the map of maximum

LCU depths. As observed from this figure, the regions of eyes

Fig. 8. Example of maximum LCU depths output by our adaptive CTU par-
tition structure for the video frame of Fig. 1-(b). They are obtained using the
weight map of Fig. 5. Each block stands for a 64 64 block, except the blocks
of the last row. The sizes of LCUs in the last row are 56 64 so that their depths
are 3. The intensities of each block mean the maximum LCU depths.

and mouth have the largest maximum LCU depths, followed
by other facial regions, and the background has the smallest
maximum LCU depths. Finally, our CTU partition structure can
be adaptive to the pixel-wise weight map through (5).

V. WEIGHT-BASED URQ SCHEME FOR
RATE CONTROL IN HEVC

In this section, we describe the details of the proposed rate
control scheme, namely weight-based URQ scheme, for HEVC.
Our weight-based URQ scheme allocates different amounts of
bits to the LCUs according to their importance. To make the
description more concrete, we first overview in Section V-A
the conventional pixel-based URQ scheme of HEVC. Then, we
present in Section V-B how the visual quality of face, in partic-
ular facial features, is improved, by proposing our weight-based
URQ scheme.

A. Overview of the Pixel-Based URQ Scheme

The key issue of rate control in video coding is computing
QPs5, which can minimize the distortion of a compressed video
at a given bit-rate. However, there exists a chicken and egg
dilemma between the actually generated bits and QPs. In order
to solve this dilemma, a quadratic pixel-based URQ scheme
[29] has been incorporated in HEVC to calculate QPs, based
on the predicted target bits and image complexity before actual
encoding. It is important to recognize that such a rate control
scheme is developed at pixel level. As such, it can be easily ap-
plied in bit allocation at group of pictures (GOP), frame, and unit
levels. Since our work mainly deals with the unit level rate con-
trol, the following reviews the pixel-based URQ scheme from
the aspect of unit level.
At unit level, the URQ scheme needs to estimate QPs for each

LCU, given the target bit budget assigned to this frame. From
now on, let us look at the method of computing QPs for each
LCU in the pixel-based URQ scheme. Assume that the predicted
mean absolute difference (MAD) for the th LCU is ,
which indicates the image complexity. Then, given target bits
for the th LCU, its QP (denoted as ) can be estimated by
solving the quadratic equation:

(6)

5A small value of QP yields the small quantization step (QS) so that more bits
can be generated for high quality video.
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where and are the first-order and second-order parameters
of URQ model, which can be updated by a linear regression
method [33] after encoding each frame. Recall that is the
number of pixels in each LCU. Then, after solving (6), can
be obtained as

(7)

Then, the only task left for estimating is to determine
target bits for each LCU. is related to two factors: the
buffer status and the actual remaining bits, with the following
equation:

(8)

where represents the target bits based on the buffer status
for each LCU; stands for the target bits upon the remaining
bits for each LCU. For more details of obtaining , see [29].
Besides, is a parameter to compromise the effects of the buffer
status and remaining bits on computing . In [29], is set to
0.5.
Next, towards the estimation of , we focus on the way of

obtaining target bits by introducing the term of bit per pixel
(bpp). Before the th LCU is encoded, its bpp needs to be up-
dated by

(9)

In (9), denotes the number of remaining unencoded pixels
before encoding the th LCU. is the target bits for encoding
the th LCU and its subsequent LCUs. Prior to encoding the
th LCU, has to be updated by , where
denotes the actually generated bits of the th LCU. Here,

is initialized to be as the budget for total target bits of
the current frame when encoding its first LCU. Following the
renewed and can be updated by (9). Then, can
be obtained on the basis of :

(10)

Finally, with estimated , rate control can be achieved via
outputting QPs by turns, upon (7) for each LCU. Besides, to
avoid the sudden change of QPs, the pixel-based URQ scheme
adds the following boundaries to smooth for each LCU:

(11)

where means the average value of the neighboring (al-
ready encoded) QPs of the th LCU.
However, since the above pixel-based URQ scheme does not

take the unequal importance of each pixel into consideration, it
wastes a lot of bits on encoding non-ROI regions, e.g., back-
ground, to which humans pay less attention. Therefore, we put
forward the weight-based URQ scheme in the next subsection,
taking account of the pixel importance.

B. The Proposed Weight-Based URQ Scheme

It can be seen above that bpp is a crucial term in the pixel-
based URQ scheme. However, bpp does not consider any pixel
importance, from the viewpoint of human perception. As pre-
sented in Section III-B, the pixel-wise weight maps, indeed, can
provide us with the insightful information about the pixel impor-
tance. So, we propose a new term, bit per unit weight (bpw), in
light of our HP model, for the weight-based URQ scheme. Nat-
urally, before encoding a video frame with pixels, the bpw
can be determined by

(12)

where represents the weight of the th pixel and is the
target bit budget of the current frame in total. With the new
term bpw, the rate control can be worked out, to be presented
subsequently.
At the beginning, prior to encoding a frame, target bit budget
of this frame needs to be estimated by [29], and in our weight-

based URQ scheme has to be separated into two portions
for the face and background. Assuming that and are the
target bit budgets for the face and background, we can obtain
the following:

(13)

where denotes indices of the background pixels, the weights
of which are equivalent to 1; means indices of the facial
pixels, the weights of which are larger than 1. In (13), is a
parameter balancing the bits assigned to face and background.
Then, the target bit budgets of the face and background can be
obtained by

(14)

(15)

Next, let us look at how to assign the target bits to each LCU.
First, the LCUs have to be classified into two categories: either
background or face, according to the average weight of each
LCU. For the LCUs of background, our weight-based scheme
is reduced to the conventional pixel-based URQ scheme since
the weights of each pixel in the background are equivalent to
1. Therefore, the pixel-based URQ scheme is directly utilized
to allocate target bits to each background LCU, using target bit
budget . For the LCUs of face, we need to update their bpws
by rewriting (9) as

(16)

where and define the total target bits and the set of pixel
indices, respectively, for the th and its subsequent facial LCUs.
Note that is initialized to be , when encoding the first
LCU of the facial region. Afterwards, needs to be updated
for the following LCUs of the face, with the method similar to
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calculating in Section V-A. Different from the bpp in (9),
bpw is able to incorporate the weights of pixels given the HP
model.
Then, the target bits for each facial LCU, with respect to the

remaining bits, can be written as

(17)

Recall that is the set of pixel indices in the th LCU. Clearly,
the facial features can be emphasized, since more target bits are
allocated through (17) with high values of in the regions of
facial features.
Finally, similar to (8), the target bits can be estimated by

, where is the target bits regarding the buffer
status. Then, the rate control at unit level is achieved in our
weight-based URQ scheme, by outputting QPs for all LCUs
with (7). Note that the same as the pixel-based URQ scheme, our
scheme iterates over the steps of estimating QPs and updating
target bits, for encoding each LCU in the scan order. The main
difference between our and pixel-based URQ [29] schemes is
the step of updating target bits, in which our scheme introduces
a novel term bpw, instead of the conventional bpp, to cater for
the proposed HP model. After setting the target bits in accor-
dance with the HP model, QP values may be reduced in the re-
gions of face, especially facial features. With the reduced QPs,
our scheme is able to adaptively increase the number of actual
bits in ROI regions to satisfy the HVS. As such, the pixel im-
portance can be finally taken into account for the rate control in
conversational HEVC coding.
Furthermore, in order to smooth the QPs obtained above, we

need to rewrite (11) to set the QP boundaries by

(18)

which is adaptive to the average weight of each LCU. Recall
that is the number of pixels in each LCU. As observed from
(18), for an LCU, the growth of its average weight can lead
to a broader QP boundary. Since the average weight of each
LCU in facial regions is greater than that in background, its
QP boundary is broader than that for the background, thereby
further improving the visual quality in facial regions. Similarly,
visual quality improvement in regions of mouth and eyes (that
have larger average weights) may be greater than other facial
regions.
One example for the map of QPs output by our scheme is

demonstrated in Fig. 9. We can observe from this figure that
eyes and mouth have the smallest QPs, followed by other fa-
cial regions, and the background has the largest QPs. Such QP
results show that our weight-based URQ scheme is adaptive to
the HP model. Specifically, small QPs of the facial regions, in
particular the eyes and mouth, can generate more actual bits,
leading to better visual quality. Of course, due to the large QPs,
the visual quality in the background is worse, but it is indifferent
in light of the HVS.

Fig. 9. Example of QPs at LCU level for the video frame of Fig. 1-(b), output
by our weight-based URQ scheme. They are obtained using the weight map of
Fig. 5. Each block stands for a 64 64 block, except the blocks of the last row.
The intensities of each block indicate the QP values.

VI. EXPERIMENTAL RESULTS

In this section, experiments were performed on six test video
sequences to validate the proposed approach on conversational
HEVC coding. Here, we used the HM 9.0 software [28] with
its default pixel-based URQ scheme [29] as the conventional
HEVC approach. In our approach, the proposed adaptive CTU
partition structure (presented in Section IV) and weight-based
URQ rate control scheme (described in Section V) were imple-
mented into HM 9.0.

A. The Test Video Sequences and Parameter Selections

We carried out the experiments on two conversational video
sequences at CIF resolution (352 288): Akiyo and Foreman,
and four conversational video sequences at 1080p HD resolu-
tion (1920 1080): Yan, Simo, Lee, and Couple. Note that Lee
and Couple were captured in dark room with poor illumination,
in order to validate the robustness of our approach, in terms of
the accuracy of the facial feature detection as well as the coding
performance.
Since there is no standard 1080p HD conversational video,

we obtained four raw conversational video sequences at
1920 1080 resolution with 150 frames, using a Sony
XDCAM-PDW-700 camera. In such a camera, PowerHAD FX
CCDs, featuring a signal processing ASIC with 14-bit A/D con-
verters, enabled the capture of very high quality images. After
video capture, camera data, with 1080p HD video clips at frame
rate of 25 fps, were stored in MXF-format files. Afterwards,
with audio component being removed, we cut each video clip to
150 frames, and then converted them into color images in BMP
format with RGB components (8 bits per component). Finally,
all the BMP images were assembled into a video sequence in
YUV format with 4:2:0 sampling. The video sequences are
freely downloadable in http://www.ee.buaa.edu.cn/xumfiles,
and they may have potential to facilitate the future research
on HD conversional video processing. Here, we show the four
HD video sequences, namely Yan, Simo, Lee, and Couple, in
Figs. 1-(b) and 10. Moreover, in our approach, we used the
automatic extraction method of Section III-B to obtain the
regions of face and facial features. Examples of the extraction
results are shown in Figs. 1 and 10.
In our experiments, we used the typical parameter settings of

HM 9.0, as tabulated in Table I. Furthermore, the first frame is
compressed only using intra-prediction as the I-frame, and then
the following frames are inter-coded as P frames. For I-frame,
the QP of each LCU was set to 32 by default. For P-frames,
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Fig. 10. First row: Original conversational video sequences of Simo, Lee and Couple (only showing one random frame) with the resolution 1920 1080. Second
row: Extracted faces of the conversational video sequences of the first row. Third row: Extracted facial features of the conversational video sequences of the first
row. (a) Simo, (b) Lee, (c) Couple.

Fig. 11. Complexity-distortion curves of compressing video sequence Yan with our approach at 100 kbps. (a) Whole, background, and facial regions, (b) Facial
features.

TABLE I
THE PARAMETERS FOR VIDEO CODING

the pixel-based URQ scheme [29] was applied to compute the
QPs in the conventional approach. In our approach, the pro-
posed weight-based URQ scheme was implemented to obtain
the QPs of P-frames at unit level.
In our approach, we empirically set for re-

fining weight map by (3), where is the number of pixels be-
longing to the th facial feature. Besides, in our weight-based
URQ scheme, parameter of (15) balances the trade-off of vi-
sual quality between ROI and non-ROI regions. In our exper-

iments, it was tuned to be 5 in our experiments to generally
yield the satisfactory results, whichmean the adequate improve-
ment of visual quality in face with acceptable reduction of vi-
sual quality in background. Such a setting of was verified to
be effective by the rate-distortion performance evaluation of
Section VI-C and the subjective quality evaluation of VI-D.
Thresholds and of the proposed adaptive CTU partition
structure were chosen to be 1 and 2, respectively, in light of
the following experimental analysis. For more details about the
threshold setting, see the next subsection.

B. Encoding Time Evaluation

As claimed in Section IV, our approach with the novel adap-
tive CTU partition structure is capable of reducing the encoding
complexity of HEVC. Therefore, it is worth evaluating the en-
coding time of our approach. The distortion-complexity curves
of our approach on encoding video sequence Yan at 100 kbps
are plotted in Fig. 11, by modifying thresholds and . Note
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TABLE II
ENCODING TIME REDUCTION OF OUR APPROACH OVER CONVENTIONAL HM 9.0 APPROACH ON CIF VIDEO SEQUENCES

TABLE III
ENCODING TIME REDUCTION OF OUR APPROACH OVER CONVENTIONAL HM 9.0 APPROACH ON HD VIDEO SEQUENCES

that the values in the horizontal axis are normalized encoding
time. From this figure, we can see that along with the increasing
encoding time, the average Y-PSNR of the whole region of de-
coded video enhances slightly. However, the quality enhance-
ment in the regions of face/facial features almost stops once the
normalized time arrives at 0.46, in which the corresponding set-
tings of and are 1 and 2, respectively. This phenomenon is
possibly due to the fact that the maximum LCU depths of facial
regions almost reach the largest value (i.e., 3) in such settings.
Therefore, in the subsequent experiments, we set thresholds
and to 1 and 2, respectively, for reducing the encoding time as
far as possible while ensuring the visual quality of facial regions.
The aim of our adaptive CTU partition structure is to reduce

encoding time of HEVC, while guaranteeing the visual quality
of facial regions. Obviously, such an aim is achieved as reported
in Tables II and III. Note that in our approach the encoding time
drops a lot, but the visual quality in facial regions are still in-
creased. More details about the visual quality improvement are
to be presented in the next subsection. Furthermore, it can be
found out from Tables II and III that our approach is able to
save the encoding time by up to 23.8% at CIF resolution and
62.8% at 1080p HD resolution. The greater reduction of en-
coding time in the HD video sequences is possibly owing to
the fact that the HD video sequences have larger smooth re-
gions with smaller maximum LCU depths, in comparison with
the CIF video sequences. The improvement of distortion-com-
plexity performance is really beneficial to HEVC for HD video
applications, which consume far more time than other low res-
olution videos.

C. Rate-Distortion Performance Evaluation

In this subsection, we move to the comparisons of rate-distor-
tion performance between our and the conventional HEVC (HM
9.0) approaches on six test video sequences, including two CIF
videos: Akiyo and Foreman and four 1080p HD videos: Yan,
Simo, Lee, and couple.
First, Fig. 12 plots the rate-distortion curves of our and HM

9.0 approaches in face, background, and whole regions. It can
be observed from Fig. 12 that our approach outperforms HM
9.0 at various bit-rates in terms of average Y-PSNR of the facial

region, with even less encoding time (see Tables II and III). As
the cost, the rate-distortion performance of background may be
reduced. However, as we have mentioned before, thanks to the
HVS, most of our attentions are concentrated on the face (i.e.,
ROI region), while little eyesight stays in the background (i.e.,
non-ROI region) long. Consequently, the degraded distortion
in background cannot set off any huge tempest for the integral
perceived visual quality.
Furthermore, Fig. 13 shows the rate-distortion performance

of our and HM 9.0 approaches, in the regions of face and facial
features, i.e., nose, mouth, and eyes. Clearly, the experimental
results in this figure illustrate that the average Y-PSNRs of the
face and facial features are significantly enhanced at various
bit-rates. Besides, the rate-distortion improvement of HD video
sequences in the regions of mouth and eyes is rather greater
than that in the region of face. As a result, the overall perceived
visual quality can be further refined, agreeing with the HVS.
The experimental results of Fig. 13 thus reveal the effectiveness
of the proposed HP model and its corresponding weight-based
URQ scheme, for the rate control in HEVC.
At last, we compare the experimental results of our and HM

9.0 approaches, from the aspect of perceived visual quality.
Fig. 14 demonstrates the 110th reconstructed frame of Foreman
compressed at 40 kbps, and Fig. 15 shows the 20th reconstructed
frame of Yan compressed at 100 kbps. As expected, our ap-
proach is capable of yielding more favorable visual quality with
sharper edges and less blurred texture in the facial region, espe-
cially in the regions of facial features. Accordingly, the average
Y-PSNRs in these regions have been significantly improved. As
the cost, the average Y-PSNRs in the background are decreased,
caused by two factors: (1) our adaptive CTU partition structure
and (2) the proposed weight-based URQ scheme. It, however,
has little negative effects on the perceived visual quality of the
whole video, since the reduction of visual quality outside facial
region is almost unnoticeable.

D. Subjective Quality Evaluation

It is worth investigating the performance of our approach by
means of perceptually relevant metric. In this subsection, we
thus focus on the experiments of subjective quality evaluation



486 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 8, NO. 3, JUNE 2014

Fig. 12. Rate-distortion performance comparison for face, background and whole regions, between the conventional HM 9.0 and our approaches, on compressing
six conversational video sequences. (a) Akiyo (CIF), (b) Foreman (CIF), (c) Yan (1080p HD), (d) Simo (1080p HD), (e) Lee (1080p HD), (f) Couple (1080p HD).

on all the video sequences compressed by our and the conven-
tional HM 9.0 approaches at different bit-rates.
Here, we adopted a single stimulus continuous quality scale

(SSCQS) procedure, proposed by Rec. ITU-R BT.500 [34], to
rate the subjective quality. The experiment we conducted was
divided into two sessions. The first session included only CIF
test video sequences: Akiyo and Foreman, while the second
one was comprised of HD test sequences: Yan, Simo, Lee, and
Couple. Note that the uncompressed and compressed video se-
quences in each session were displayed in a random order. Be-
fore each session, the observers were required to view 5 other
training videos (one training video per quality scale) to help
them better understand the subjective quality assessment. 12 ob-
servers (4 females and 8 males), aging from 20 to 45, were in-
volved in this test. We used a 23 DELL U2312HM LCD mon-

itor with its resolution being 1920 1080 to display the videos.
The viewing distance was set to be approximately three times of
the video height for rational evaluation. The quality rate scales
for observers to evaluate after viewing are: excellent (100-81),
good (80-61), fair (60-41), poor (40-21), and bad (20-1).
After the subjective evaluation, we computed Difference

Mean Opinion Scores (DMOS), indicating the visual differ-
ence between the compressed and uncompressed videos. The
smaller the value of DMOS is, the better subjective quality the
compressed video sequence has. Then, Table IV compares the
average DMOS values of all compressed video sequences. From
this table, we can see that the DMOS values of our approach are
rather smaller than those of the conventional HM 9.0 approach.
In otherwords, our approach can provide higher subjective video
quality, especially for HD videos at relatively low bit-rates.
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Fig. 13. Rate-distortion performance comparison for the regions of face and facial features, between the conventional HM 9.0 and our approaches, on compressing
six conversational video sequences. (a) Akiyo (CIF), (b) Foreman (CIF), (c) Yan (1080p HD), (d) Simo (1080p HD), (e) Lee (1080p HD), (f) Couple (1080p HD).

Fig. 14. Visual quality comparison of Foreman (CIF resolution). (a) and (b) show its 110th decoded frames compressed at 40 kbps by our and HM 9.0 approaches,
respectively. In (a), the average Y-PSNRs of the background, face, mouth, eyes and nose in HM 9.0 are 31.19 dB, 30.42 dB, 26.22 dB, 26.98 dB and 30.47 dB. In
(b), the average Y-PSNRs of the background, face, mouth, eyes and nose in our approach are 30.07 dB, 31.55 dB, 27.34 dB, 28.52 dB and 31.71 dB. (a) HM 9.0,
(b) Our approach.

In summary, our subjective results here, together with the pre-
vious objective results reported in SectionsVI-B andVI-C, illus-

trate that our approachonconversationalHEVCcodingperforms
better in termsofbothencoding timeandperceivedvisualquality.
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Fig. 15. Visual quality comparison of Yan (1080p HD resolution). (a) and (b) show its 20th decoded frames compressed at 100 kbps by our and HM 9.0 approaches,
respectively. In (a), the average Y-PSNRs of the background, face, mouth, eyes and nose in HM 9.0 are 37.86 dB, 33.64 dB, 26.15 dB, 29.22 dB and 32.00 dB. In
(b), the average Y-PSNRs of the background, face, mouth, eyes and nose in our approach are 37.33 dB, 37.16 dB, 31.65 dB, 33.72 dB and 35.26 dB. (a) HM 9.0,
(b) Our approach.

TABLE IV
DMOS COMPARISON OF OUR AND CONVENTIONAL HM 9.0 APPROACHES

VII. CONCLUSION

In this paper, we have proposed an ROI-based perceptual
video coding approach, for improving the perceived visual
quality of conversational videos on the HEVC platform. It was
argued that in conversational HEVC coding, the rate-distortion
performance of some important subregions inside an ROI
region (i.e., mouth and eyes in a face) is inferior to other ROI
subregions. Therefore, in contrast with the previous perceptual
video coding approaches, our approach endows the unequal
importance within the facial region to emphasize its facial
features, by proposing a perception model called HP model.
Benefiting from the HP model, an ROI-based adaptive CTU
partition structure was developed to reduce the encoding com-
plexity of HEVC, while maintaining the visual quality in the
facial region, especially in the regions of facial features. Fur-
thermore, we proposed a weight-based URQ scheme, instead of
the previous pixel-based URQ scheme in HEVC, to adaptively
assign bits according to the HP model. This way, the visual
quality of face and facial features, in conversational HEVC
coding, is enhanced to varying degrees in accordance with

their importance weights, thereby greatly improving the overall
perceived visual quality. Finally, the experimental results
demonstrated that our approach considerably outperforms the
conventional HEVC approach, in terms of both encoding time
and perceived visual quality, for conversational video coding.
Our work in its present form merely focuses on the rate con-

trol scheme at LCU level. Therefore, it is hard to significantly
improve the visual quality of facial features for the videos at
low resolutions, due to the fact that the sizes of facial features
may be even smaller than the sizes of LCUs. On the other hand,
the rate control at CU level, in keeping with the flexible CTU
partition structure of HEVC, provides a promising trend for the
future work.
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