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ABSTRACT

The previous work has demonstrated that integrating top-
down features in bottom-up saliency methods can improve the
saliency prediction accuracy. Therefore, for face images,this
paper proposes a saliency detection method based on Gaus-
sian mixture model (GMM) , which learns the distribution of
saliency over face regions as the top-down feature. Specifi-
cally, we verify that fixations tend to cluster around facialfea-
tures, when viewing images with large faces. Thus, the GMM
is learnt from fixations of eye tracking data, for establishing
the distribution of saliency in faces. Then, in our method, the
top-down feature upon the the learnt GMM is combined with
the conventional bottom-up features (i.e., color, intensity, and
orientation), for saliency detection. Finally, experimental re-
sults validate that our method is capable of improving the ac-
curacy of saliency prediction for face images.

Index Terms— saliency detection, facial features, GMM

1. INTRODUCTION

Visual attention [1] has been widely studied in psychophysic-
s, neurophysiology, and even computer vision societies [2].
With computation on features of either videos or images,
saliency detection is an effective way to predict the visualat-
tention attracted by different regions of a scene. As the output
of saliency detection, the saliency map of an image or a video
frame has been widely applied in object detection [3], object
recognition [4], image retargeting [5], image quality assess-
ment [6], and also image/video compression [7].

The existing methods on saliency detection can be clas-
sified into two categories: bottom-up and top-down method-
s. The representative bottom-up method on detecting image
saliency is Itti’s model [8], which combines center-surround
features of color, intensity, and orientation together. After-
wards, Koch and Ullman [9] extended the Itti’s model by in-
corporating the proto-object inference in the saliency map.
Most recently, there has been extensive advanced work (e.g.,
[10–12]) on bottom-up saliency detection.
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Fig. 1. Examples for saliency prediction vs fixations in face region, selected
from [13]. The red dots represent the fixations recorded by the eye tracker.
Note that both saliency and fixations belonging to face regions are displayed.

In fact, top-down visual features play an important role in de-
termining the saliency of a scene. So, the top-down salien-
cy detection methods have been extensively studied in [14–
16]. Cerf et al. [15] found out that the face is an impor-
tant top-down feature to attract human attention, as the faces
were fixed on in88.9% within first two fixations (7 subjects
viewing 150 images with face) in their experiments. There-
fore,they proposed to combine Viola & Jones (VJ) face detec-
tor [17] with Itti’s model [8] for improving the saliency detec-
tion accuracy over face images. Since it is more reasonable to
learn how important the top-down features are for attracting
human attention, several state-of-the-art methods [13, 18, 19]
have been proposed to apply machine learning algorithms in
top-down saliency detection. For example, Zhao [19] utilized
the fixations on face images to quantify the importance of face
channel on attracting human attention.

Although the existing work has taken into account faces
on saliency detection, it does not explore the actual distri-
bution of eye fixations within faces. As shown in Figure 1,
the simple assumption of isotropic Gaussian model (GM) for
saliency in face regions [15, 19] has limitation on modeling



visual attention attracted by faces, especially for imageswith
large scale1 faces. In fact, saliency distribution, in the form
of Gaussian mixture model (GMM), can be learnt from eye
fixations on face images. Figure 1-(c) shows that the saliency
with the learnt GMM distribution is more in accord with the
ground-truth visual attention. This paper therefore proposes
a GMM-based saliency detection method, which learns vari-
ous GMMs across different face scales, for predicting visual
attention in face images.

The contributions of this paper are listed as follows:

• We analyze the human visual attention on viewing im-
ages containing faces at different scales. The analyt-
ical results reveal that humans tend to be attracted by
faces. Especially, when the scales of faces are large in
the images, the majority of attention is drawn by facial
features (e.g., eyes). Such results motivate our GMM-
based method on saliency detection for face images.

• We model the human visual attention attended to face
regions using GMM distribution. Specifically, we uti-
lize Expectation Maximization (EM) algorithm [20] to
learn GMMs for different face scales from the ground-
truth fixations. Based on the learnt GMM , the distribu-
tion over face regions is incorporated as the top-down
feature in saliency detection for face images.

• We establish a large database of 476 face images with
823 faces for the saliency analysis. These images
with their corresponding fixations are selected from
four state-of-the-art eye tracking databases. The
database and the corresponding code are available on
www.ee.buaa.edu.cn/xumfiles/Attachment.html.

2. MOTIVATION

In [15], as the top-down cue, face, is of great importance to
draw human attention over face images. It is further intuitive
that the facial features (e.g., eyes and mouth) may attract a
large amount of human attention on large scale face. Thus,
this section focus on figuring out how significant the face and
facial features are for human attention. Section 2.1 discuss-
es the eye tracking database we established for the statistical
analysis. In Section 2.2, a method on automatically extract-
ing the face and facial features is presented, as the preliminary
for our statistical analysis of human visual attention. Section
2.3 shows the importance of face and facial features to hu-
man attention, via investigating the data of our eye tracking
database.

2.1. Database
For saliency analysis of face region, we constructed a large
database, which contains extensive face images with fixation-
s viewed by several subjects. Specifically, the 476 images
with 823 faces2 were selected from four existing databases:

1In this paper, scale means the proportion of pixel number belonging to
face region in the image.

2There may exist more than one faces in an image.

the MIT database [13], FIFA database [21], PL database [22],
and NUS database [23]. These images were selected with the
following criteria:

• Each scale has sufficient numbers of images and fixa-
tions.

• Images with exaggerated expressions were not exclud-
ed in our database.

• Images with frontal (in which turning degree of head is
less than45◦) faces were included.

The images, eye tracking results, and the code for extract-
ing fixations in our database are available on the web. This
may have potential to facilitate the future work on the visual
attention model of face regions.

2.2. Automatic detection on face and facial features
For analyzing the eye fixations on different parts of face, the
region of face and its sub-regions for facial features have to
be identified in an image. Generally speaking, our extraction
technique is based on a real-time face alignment method [24].
To be more specific, several key feature points obeying the
point distribution model (PDM) are located in an image us-
ing the method in [24], which combines the local detection
(texture information) and global optimization (facial struc-
ture) together. Here, 68-point PDM is utilized to detect 68
key feature points in a face. Then, these points are connected
to precisely extract the contours and regions of face and facial
features.

2.3. Analysis on visual attention on face and facial fea-
tures
Now, we concentrate on analyzing the visual attention on face
and facial features. Here, we chose all images with one face
from our database to avoid the influence among multiple faces
on attracting attention in a scene. As a result, 281 images
were finally selected with 36,497 fixations.

In order to analyze the quantified visual attention on the
face, we plot in Figure 2 the average percentages of fixations
(over the 281 images with 11,097 fixations on face and 25,400
fixations on the background) falling into face and background,
respectively. We also plot in Figure 2 the proportions of pixels
belonging to the face and background, respectively. Note that
the faces were extracted using the method mentioned above.
From this figure, we can see that although the faces average-
ly take up3.7% of whole images, they attract30.4% of eye
fixations. This verifies that the visual attention on face is sig-
nificantly more than that on background.

Beyond, there is an insight that the visual attention on face
increases along with the enlarged size of face in the image. To
validate such an insight, we show in Figure 3 the proportions
of fixations on faces at different scales. Note that the scales of
faces in those 281 images are clustered to 3 levels using the
K-means algorithm.

Next, we move to the statistical analysis on the eye fixa-
tion points falling into different regions of face, to investigate
the visual importance of facial features (i.e., left eye, right



Fig. 2. Proportions of eye fixations and pixel numbers for the regions of
face and background.
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Fig. 3. Statistical results on proportions of eye fixations belonging to face
at different scales. Note that the results are averaged overall 281 images.

eye, nose, and mouth). It is intuitive that the facial features
are of great importance to visual attention, when the image is
displayed with a close up of face. Therefore, it is interesting
to find out the fixation numbers of facial features at various
scales. Figure 4 shows the proportions of fixations belonging
to right eye, left eye, nose, and mouth, averaged in all 281
images. From this figure, one may observe that more atten-
tion is paid to facial features, when the face has a large scale
in the image. Figures 3 and 4 suggest that the visual impor-
tance of face and facial features enhances alongside the in-
creased scale of face. It is worth mentioning that the attention
enhancement of mouth is similar to that of face, whereas the
attention on other facial features increases more sharply when
approaching large scale. Thus, facial features need to be taken
into consideration for saliency detection on large scale faces.

3. THE PROPOSED METHOD

This section mainly works on the proposed method for mod-
eling saliency on face and facial features at different scales.
In Section 3.1, we discuss preprocessing on the fixations for
learning GMM. Next, GMM is learnt from the preprocessed
training fixations, to be discussed in Section 3.2. In Section
3.3, we present the saliency detection method with the learnt
GMM.

3.1. Preprocessing
For learning GMM, preprocessing has to be conducted to cal-
ibrate and normalize the eye fixations. Specifically, to avoid
the uncertainty of face positions in different images, all fix-
ations belonging to face region have to be calibrated in the
following way.

As seen from Figure 5, Point A, the upper left point of
PDM, is set to be the original point of the fixation coordi-
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Fig. 4. Statistical results on proportions of eye fixations belonging to dif-
ferent facial features at various scales. Note that the results are averaged over
all 281 images.

Fig. 5. Coordinate calibration and normalization on 68-point PDM.

nates in the face. Then, the coordinates(x, y) of fixations are
calibrated to be(x∗, y∗) via translation:

{

x∗ = x− xA

y∗ = y − yA,
(1)

where(xA, yA) is the coordinate for Point A.
Next, to deal with varying sizes of faces and facial fea-

tures, fixations need to be normalized based on the width of
face. To be more specific, the Euclidean distancel between
PointsA andB (as shown in Figure 5) is calculated as the
unit length for fixation coordinates. As such, the normalized
coordinates(x′, y′) can be calculated as follows,











x′ =
x∗

l

y′ =
y∗

l
.

(2)

Finally, the positions for eye fixations attended to faces can
be represented in a uniformed coordinate system. This way,
all fixations in faces from different images can be processed
together for learning GMM.

3.2. Learning GMM
As aforementioned, the facial features attract a large amount
of human attention, once the face is of large scale. Therefore,
we can use the GMM to model the saliency within a face re-
gion, which has large saliency values around facial features.



Assuming thatx = (x′, y′) is the calibrated and normalized
coordinate of point(x, y) within a face, the GMM can be writ-
ten as a linear superposition of Gaussian components in the
form:

K
∑

k=1

πkNk(µk,Σk), (3)

and

Nk(x) = exp {−
1

2
(x− µk)

T
Σ

−1

k
(x− µk)}, (4)

whereπk, µk, Σk are the mixing proportion, mean, and vari-
ance of thek-th Gaussian component. In (3),K is the total
number of Gaussian components.

In fact, the GMM can be learnt from fixations of eye track-
ing data. Here, the EM algorithm [20] is applied to learn the
GMM on the calibrated and normalized fixations falling into
face regions. Note that varying numbers of Gaussian com-
ponents are applied to different face scales. For example, as
pointed out in Section 2, three facial features (right eye, left
eye, and nose) tend to attract more attention when the face
is in a large scale. Thus, the number of Gaussian components
may be three, corresponding to the number of these facial fea-
tures.

3.3. Saliency detection
Given the learnt GMM, the top-down conspicuity map on face
channel (F), denoted byS(F), can be worked out on the ba-
sis of (3) and (4). However, for saliency detection the mean
valuesµk in (3) and (4) are replaced by the central points of
facial features, when the number of Gaussian components is
3. This is because there may exist the deviation between the
statistical centroids of Gaussian components and the detected
central points of facial features. Note that the face detection
method is mentioned in Section 2.2.

Next, similar to [15], the top-down conspicuity map is in-
tegrated with the bottom-up conspicuity maps of color (C),
intensity (I), and orientation (O). As a result, the final salien-
cy mapM can be generated by

M = w1S(C) + w2S(I) + w3S(O) + w4S(F), (5)

whereS(·) is the normalized conspicuity map on each fea-
ture channel. S(C), S(I), and S(O) can be obtained
by the method in [9], whereasS(F) needs to be yield-
ed upon the learnt GMM as aforementioned. In addition,
(w1, w2, w3, w4) are weights corresponding to each feature
channel. They can be computed by least square fitting. For
more details on computing these weights, refer to [19]. Figure
6 shows an example of overall procedure on our GMM-based
saliency detection method.

4. EXPERIMENTAL RESULTS

In this section, experimental results are presented to evaluate
the saliency prediction performance of our method. In Section
4.1, we provide the training results on learning GMMs from
ground-truth fixations. In Section 4.2, we show the testing
results of our method, in comparison with the conventional

Fig. 6. Procedure of our GMM-based saliency detection method.

Table 1. The numbers of training faces and fixations
Training Results Scale 1 Scale 2 Scale 3

Range 0-0.02 0.02-0.07 0.07-0.60
Training faces 403 116 27

Fixations for Training 8402 4441 3134

methods: Ittiet al. [8], Cerf et al. [15], Zhaoet al. [19], Judd
et al. [13], Duanet al. [11], and Zhanget al. [12]. Here, the
Area Under Curve (AUC), Kullback-Leibler (KL) [25] diver-
gence, and the Normalized Scanpath Saliency (NSS) [26] are
used as metrics for evaluating the accuracy of saliency detec-
tion.

4.1. Training Result
In our experiment, we divided our eye tracking database (p-
resented in Section 2.1) into training and test sets. For train-
ing set, 401 images containing 546 faces were selected with
15,977 fixations. For the test set, the remaining 75 images
with 75 faces were utilized, in which 3,268 fixations were ob-
tained. Note that only 621 among 823 faces in 476 images can
be correctly detected by the face detection method of Section
2.2. Thus, only 621 faces were used for training and testing
for our experiments. Besides, there is no overlap between the
training and test sets.

Since our method works on different scales of faces, we
clustered 621 faces into three groups ( 546 faces for the train-
ing and 75 faces for test images), according to the correspond-
ing face scales. Table 1 reports the ranges of these scales.
Besides, Table 1 shows the numbers of faces and their corre-
sponding fixations used for learning GMM at different scales.
Note that there may be more than one scales of faces in these
images. Thus, only the face numbers are provided in Table 1.

With the training eye tracking data, we learnt the GMMs
for each face scale. The results of GMMs are shown in Fig-
ure 7. Note that the results for different numbers of Gaussian
components are provided in this figure. As seen from Fig-
ure 7, for different numbers of components on GMMs, Scales
1 and 2 have the similar distributions of fixations. Howev-
er, for Scale 3, the GMM with three components reflects that
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Fig. 7. Contours of GMMs learnt in our experiment.

fixations cluster in the facial features. Thus, to simplify our
model, only one component is for Scale 1 and Scale 2, while
three Gaussian components are applied for learning GMM at
Scale 3. Moreover, the learnt GMMs of Figure 7 differ from
Gaussian distributions of Cerfet al. [15] in the following
three aspects:

• For Scale 3, three Gaussian components model the fix-
ations around facial features.

• There exists the anisotropy in learnt GMMs, rather than
the assumption on isotropy of Gaussian distribution
[15].

• The standard deviation of the learnt GMMs decreases
along with the increase of face scales, while the Gaus-
sian distribution in [15] is simply assumed to be pro-
portional to the face size.

4.2. Testing Result

AUC. In Table 2, we tabulate the AUC results of all methods
at each scale, in order to show the accuracy of saliency predic-
tion. Here, the average AUC values on all 75 test images are
provided. As seen from this table, our method outperforms
all other methods. Especially, there is 0.072 improvement of
AUC over Zhaoet al. [19] at Scale 3, in which the bottom-
up features and corresponding weights are the same as our
method. Such a significant improvement is possibly due to
the three Gaussian components around the facial features in
our learnt GMM. Moreover, we show in Figure 8 the ROC
curves of saliency prediction for Scale 3 by all methods. Al-
so, we can see that the ROC curve of our method is superior
to the conventional ones.
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Fig. 8. Average ROC curves for all Scale 3 face images.

The KL divergence and NSS.In fact, the KL divergence
measures the distance between distributions of detected and
random saliency. NSS is computed to imply the correspon-
dence between fixation locations and the saliency prediction-
s. Methods with higher KL divergence and larger NSS value
can better predict the fixations. The KL and NSS results of
saliency detection by all methods are listed in Table 2. As can
be seen from this table, our method again performs better than
the conventional methods, especially for the large scale (i.e.,
Scale 3).

Saliency Map.Figure 9 shows the saliency maps detected
by all methods. From this figure, we can see that our method
can well locate the saliency regions. For small scales, it out-
puts the result similar to Zhao [19], but with more reasonable
Gaussian distribution. For the large scale, it can yield the
appropriate map, which well reflects the saliency regions of
facial features.

5. CONCLUSION
In this paper, we have proposed to learn GMM from train-
ing fixations, for the top-down feature of face, on saliency
detection of face images. Then, combined with convention-
al bottom-up features (i.e., color, intensity, and orientation),
our saliency detection method was developed upon the learnt
GMM. Different from other state-of-the-art methods on uti-
lizing faces as the top-down feature for saliency detection,
our GMM based saliency detection method benefits from the
learnt GMM to precisely model the saliency values of face
and even facial feature regions.

To facilitate saliency analysis of face and facial regions,
we established a database of 476 images with 823 faces from
the existing databases. Working on our database, GMMs were
learnt for top-down feature in saliency detection. Finally, we
evaluated our method by the AUC, KL divergence, and NSS
metrics. In these three metrics, our method performed better
than other conventional methods, especially when the face is
with large scale.
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