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ABSTRACT

The previous work has demonstrated that integrating top-
down features in bottom-up saliency methods can improve the
saliency prediction accuracy. Therefore, for face imatigs,
paper proposes a saliency detection method based on Gau
sian mixture model (GMM) , which learns the distribution of
saliency over face regions as the top-down feature. Specifi
cally, we verify that fixations tend to cluster around fadée-
tures, when viewing images with large faces. Thus, the GMM
is learnt from fixations of eye tracking data, for establighi
the distribution of saliency in faces. Then, in our methbé, t o
top-down feature upon the the learnt GMM is combined with ¥
the conventional bottom-up features (i.e., color, intsnaind
orientation), for saliency detection. Finally, experirtame-
sults validate that our method is capable of improving the ac

curacy of saliency prediction for face images. (@) Images with face  (b) Isotropic GM~ (c) Learnt GMM
Fig. 1. Examples for saliency prediction vs fixations in face regaeiected

Index Terms— saliency detection, facial features, GMM from [13]. The red dots represent the fixations recorded byetfe tracker.
Note that both saliency and fixations belonging to face regare displayed.

1. INTRODUCTION
In fact, top-down visual features play an important roleén d
ermining the saliency of a scene. So, the top-down salien-
y detection methods have been extensively studied in [14—
16]. Cerfet al. [15] found out that the face is an impor-
tant top-down feature to attract human attention, as thesfac
were fixed on in88.9% within first two fixations (7 subjects
9iewing 150 images with face) in their experiments. There-
fore,they proposed to combine Viola & Jones (VJ) face detec-

Visual attention [1] has been widely studied in psychoptysi
s, neurophysiology, and even computer vision societies [2
With computation on features of either videos or images
saliency detection is an effective way to predict the vigial
tention attracted by different regions of a scene. As thputut
of saliency detection, the saliency map of an image or a vide
frame has been widely applied in object detection [3], abjec
recognition [4], image reta_rgetlng [51, image quality amse tor [17] with Itti's model [8] for improving the saliency det-
ment 6], a-nd. also image/video compression _[7]' tion accuracy over face images. Since it is more reasonable t
_ The existing methods on saliency detection can be claggary how important the top-down features are for attractin
sified into two categorles: bottom-up and top-down_mef[hodhuman attention, several state-of-the-art methods [13198
S The re_pre_sentatlve bottom_—up methgd on detecting imagg, e peen proposed to apply machine learning algorithms in
saliency is Itti's model [8], which combines center-sumdu top-down saliency detection. For example, Zhao [19] iz

features of color, intensity, and orientation t_,ogether.teAf. the fixations on face images to quantify the importance af fac
wards, Koch and Ullman [9] extended the Itti's model by iN- channel on attracting human attention.

corporating the proto-object inferenc_e in the saliency map Although the existing work has taken into account faces
;\fgitlrze];: iztgé):thoer;e-uha:atl)iziz eg’ceigilY()enadvanced work (e'%'n saliency detection, it does not explore the actual éistri
P Y ' bution of eye fixations within faces. As shown in Figure 1,

This work was supported by NSFC under grant number 61202489 a the_ simpl_e assumpti.on of isotropic Gal_*'S?ia'j‘ model (GM). for
China 973 program under grant number 2013CB329006. saliency in face regions [15, 19] has limitation on modeling




visual attention attracted by faces, especially forimagils  the MIT database [13], FIFA database [21], PL database [22],
large scaléfaces. In fact, saliency distribution, in the form and NUS database [23]. These images were selected with the
of Gaussian mixture model (GMM), can be learnt from eyefollowing criteria:

fixations on face images. Figure 1-(c) shows that the salienc
with the learnt GMM distribution is more in accord with the
ground-truth visual attention. This paper therefore psgso e Images with exaggerated expressions were not exclud-
a GMM-based saliency detection method, which learns vari- ed in our database.

ous GMMs across different face scales, for predicting ¥isua o |mages with frontal (in which turning degree of head is
attention in face images. less thant5°) faces were included.

The contributions of this paper are listed as follows: The images, eye tracking results, and the code for extract-
e We analyze the human visual attention on viewing im-ing fixations in our database are available on the web. This
ages containing faces at different scales. The analytnay have potential to facilitate the future work on the visua

ical results reveal that humans tend to be attracted byittention model of face regions.

faces. Especially, when the scales of faces are large iE.Z. Automatic detection on face and facial features
the images, the majority of attention is drawn by facial

features (e.g., eyes). Such results motivate our GMMFor_ analyzing the eye fixati0n§ on differer_1t parts of face, th
based method on saliency detection for face images. region o_f _facg and. its sub-regions for famql features havg t

« We model the human visual attention attended to fac®€ identified in an image. Generally speaking, our extractio
regions using GMM distribution. Specifically, we uti- technique is base_d_on areal-time face alignm_ent methgd [24]
lize Expectation Maximization (EM) algorithm [20] to 10 P& more specific, several key feature points obeying the
learn GMMs for different face scales from the ground-Point distribution model (PDM) are located in an image us-
truth fixations. Based on the learnt GMM , the distribu- N9 the method in [24], which combines the local detection
tion over face regions is incorporated as the top-dowjtexture information) and global optimization (facial uate
feature in saliency detection for face images. ture) together.. nge, 68-point PDM is uuh;ed to detect 68

e We establish a large database of 476 face images witkey feature points in a face. Then, these points are corthecte
823 faces for the saliency analysis. These imaget0 Precisely extract the contours and regions of face anilfac
with their corresponding fixations are selected fromfeatures.

four state-of-the-art eye tracking databases. The.3. Analysis on visual attention on face and facial fea-
database and the corresponding code are available @nres

www.ee.buaa.edu.cn/rumfiles/Attachment.html.  Now, we concentrate on analyzing the visual attention oa fac
and facial features. Here, we chose all images with one face
2. MOTIVATION from our database to avoid the influence among multiple faces
In [15], as the top-down cue, face, is of great importance t®n attracting attention in a scene. As a result, 281 images
draw human attention over face images. Itis further intaiti  were finally selected with 36,497 fixations.
that the facial features (e.g., eyes and mouth) may attract a In order to analyze the quantified visual attention on the
large amount of human attention on large scale face. Thu#ce, we plot in Figure 2 the average percentages of fixations
this section focus on figuring out how significant the face andover the 281 images with 11,097 fixations on face and 25,400
facial features are for human attention. Section 2.1 discus fixations on the background) falling into face and backgohun
es the eye tracking database we established for the statisti respectively. We also plotin Figure 2 the proportions ofsx
analysis. In Section 2.2, a method on automatically extractelonging to the face and background, respectively. Nate th
ing the face and facial features is presented, as the prelipi  the faces were extracted using the method mentioned above.
for our statistical analysis of human visual attention.t®ec ~ From this figure, we can see that although the faces average-
2.3 shows the importance of face and facial features to huy take up3.7% of whole images, they attragd.4% of eye
man attention, via investigating the data of our eye tragkin fixations. This verifies that the visual attention on faceds s
database. nificantly more than that on background.
Beyond, there is an insight that the visual attention on face
2.1. Database increases along with the enlarged size of face in the image. T
For saliency analysis of face region, we constructed a larggalidate such an insight, we show in Figure 3 the proportions
database, which contains extensive face images with fixatio of fixations on faces at different scales. Note that the sazfle
s viewed by several subjects. Specifically, the 476 imagegyces in those 281 images are clustered to 3 levels using the
with 823 face$ were selected from four existing databasesk-means algorithm.
Lin this paper, scale means the proportion of pixel numbesriging to . Ne)_(t’ we mOV_e to the StatIStICTs_ll analysis on the _eye fixa-
face region in the image. tion points falling into different regions of face, to inviemte
2There may exist more than one faces in an image. the visual importance of facial features (i.e., left eyghti

e Each scale has sufficient numbers of images and fixa-
tions.
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Fig. 3. Statistical results on proportions of eye fixations beloggb face
at different scales. Note that the results are averagedadhv281 images.

eye, nose, and mouth). It is intuitive that the facial feasur

are of great importance to visual attention, when the image i o
displayed with a close up of face. Therefore, it is interasti N
to find out the fixation numbers of facial features at various R
scales. Figure 4 shows the proportions of fixations belangin

to right eye, left eye, nose, and mouth, averaged in all 281
images. From this figure, one may observe that more atten- ) _ o
tion is paid to facial features, when the face has a largescal@tes in the face. Then, the coordinatesy) of fixations are
in the image. Figures 3 and 4 suggest that the visual impofalibrated to bez”, y*) via translation:
tance of face and facial features enhances alongside the in- {x* o

Fig. 5. Coordinate calibration and normalization on 68-point PDM.

creased scale of face. Itis worth mentioning that the atent (1)
enhancement of mouth is similar to that of face, whereas the _ _ _
attention on other facial features increases more shafpiynw Where(z4,y.4) is the coordinate for Point A.

approaching large scale. Thus, facial featuresneed tkbata ~ Next, to deal with varying sizes of faces and facial fea-
into consideration for saliency detection on large scateda tures, fixations need to be normalized based on the width of
face. To be more specific, the Euclidean distahbetween
3. THE PROPOSED METHOD Points A and B (as shown in Figure 5) is calculated as the

This section mainly works on the proposed method for modunit length for fixation coordinates. As such, the normalize
eling saliency on face and facial features at differentescal coordinategz’,y’) can be calculated as follows,

Yy =y —ya,

In Section 3.1, we discuss preprocessing on the fixations for ,

learning GMM. Next, GMM is learnt from the preprocessed =T 5
training fixations, to be discussed in Section 3.2. In Sectio oy 2)

3.3, we present the saliency detection method with the fearn vy=77

GMM. Finally, the positions for eye fixations attended to faceas ca
3.1. Preprocessing be represented in a uniformed coordinate system. This way,

For learning GMM, preprocessing has to be conducted to caftll fixations in faces from different images can be processed

ibrate and normalize the eye fixations. Specifically, to dvoi t0g€ther for learning GMM.

the uncertainty of face positions in different images, ad fi 3.2. Learning GMM

ations belonging to face region have to be calibrated in thés aforementioned, the facial features attract a large atou

following way. of human attention, once the face is of large scale. Thezefor
As seen from Figure 5, Point A, the upper left point of we can use the GMM to model the saliency within a face re-

PDM, is set to be the original point of the fixation coordi- gion, which has large saliency values around facial feature



Assuming thatk = (2’,y’) is the calibrated and normalized
coordinate of pointz, y) within a face, the GMM can be writ-
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wherery, p, 3 are the mixing proportion, mean, and vari- ’

ance of thek-th Gaussian component. In (3 is the total ' = =
number of Gaussian components. \

In fact, the GMM can be learnt from fixations of eye track-
ing data. Here, the EM algorithm [20] is applied to learn the -
GMM on the calibrated and normalized fixations falling into Saliency Map

face regions. the that _Varying numbers of Gaussian com-  Fig. 6. Procedure of our GMM-based saliency detection method.
ponents are applied to different face scales. For examgple, a

pointed out in Section 2, three facial features (right egé, | Table 1. The numbers of training faces and fixations

eye, and nose) tend to attract more attention when the face Training Results | Scale1l| Scale2 | Scale3

is in a large scale. Thus, the number of Gaussian components Traiﬁi?]ggf‘;ces 0;1%22 0'0121'(6)'07 0'02'70'60

may be three, corresponding to the number of these facial fea Fixations for Training | 8402 Vil 3134

tures.

3.3. Saliency detection methods: Ittiet al. [8], Cerfet al. [15], Zhaoet al. [19], Judd

Given the learnt GMM, the top-down conspicuity map on faceet al. [13], Duanetal. [11], and Zhanget al. [12]. Here, the

channel ), denoted byS(F), can be worked ot on the ba- Area Under Curve (AUC), Kullback-Leibler (KL) [25] diver-

sis of (3) and (4). However, for saliency detection the meafc e and the Normalized Scanpath Saliency (NSS) [26] are

valuesp in (3) and (4) are replaced by the central points Ofgsed as metrics for evaluating the accuracy of saliencycdete

facial features, when the number of Gaussian components E'sg '
3. This is because there may exist the deviation between tHel. Training Result
statistical centroids of Gaussian components and theteéetec In our experiment, we divided our eye tracking database (p-
central points of facial features. Note that the face digect resented in Section 2.1) into training and test sets. Fon-tra
method is mentioned in Section 2.2. ing set, 401 images containing 546 faces were selected with
Next, similar to [15], the top-down conspicuity map is in- 15,977 fixations. For the test set, the remaining 75 images
tegrated with the bottom-up conspicuity maps of col@),(  with 75 faces were utilized, in which 3,268 fixations were ob-
intensity {[), and orientation@). As a result, the final salien- tained. Note that only 621 among 823 faces in 476 images can
cy mapM can be generated by be correctly detected by the face detection method of Sectio
M = w1 S(C) + w2 S(I) + w3S(0) + wiS(F),  (5) 2.2. Thus, oply 621 face.s were use.d for training and testing
] } O for our experiments. Besides, there is no overlap betwesn th
where S(+) is the normalized conspicuity map on each fea‘training and test sets.
ture channel. S(C), S(I), and S(O) can be obtained Since our method works on different scales of faces, we
by the method in [9], whereas(F) needs to be yield- ¢ stered 621 faces into three groups ( 546 faces for the-trai
ed upon the learnt GMM as aforementioned. In additionjng and 75 faces for testimages), according to the corraspon
(w1, ws, w3, wy) are weights corresponding to each featurgng face scales. Table 1 reports the ranges of these scales.
channel. They can be computed by least square fitting. F@§ggjges, Table 1 shows the numbers of faces and their corre-
more details on computing these weights, refer to [19]. figu gnonding fixations used for learning GMM at different scales
6 shows an example of overall procedure on our GMM-basefye that there may be more than one scales of faces in these
saliency detection method. images. Thus, only the face numbers are provided in Table 1.
With the training eye tracking data, we learnt the GMMs
4. EXPERIMENTAL RESULTS for each face scale. The results of GMMs are shown in Fig-
In this section, experimental results are presented taatal ure 7. Note that the results for different numbers of Gaussia
the saliency prediction performance of our method. In 8ecti components are provided in this figure. As seen from Fig-
4.1, we provide the training results on learning GMMs fromure 7, for different numbers of components on GMMs, Scales
ground-truth fixations. In Section 4.2, we show the testingl and 2 have the similar distributions of fixations. Howev-
results of our method, in comparison with the conventionaér, for Scale 3, the GMM with three components reflects that
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The KL divergence and NSSIn fact, the KL divergence
measures the distance between distributions of detectkd an
random saliency. NSS is computed to imply the correspon-

- \ dence between fixation locations and the saliency predictio
. . s. Methods with higher KL divergence and larger NSS value
can better predict the fixations. The KL and NSS results of
. saliency detection by all methods are listed in Table 2. As ca
Fig. 7. Contours of GMMs learnt in our experiment. be seen from this table, our method again performs bettar tha
o ] ] o the conventional methods, especially for the large scade (i
fixations cluster in the facial features. Thus, to simplifyo gcgje 3).
model, only one componentis for Scale 1 and Scale 2, while Saliency Map. Figure 9 shows the saliency maps detected
three Gaussian components are applied for learning GMM &)y, o)l methods. From this figure, we can see that our method
Scale 3. Moreover, the learnt GMMs of Figure 7 differ from ¢, \yell locate the saliency regions. For small scales, tit ou
Gaussian distributions of Cesft al. [15] in the following s the result similar to Zhao [19], but with more reasoaabl

three aspects: Gaussian distribution. For the large scale, it can yield the
e For Scale 3, three Gaussian components model the ﬁ)gppropriate map, which well reflects the saliency regions of
ations around facial features. facial features.

(e) Scale 3 (one component) (f) Scale 3 (three components)

e There exists the anisotropy in learnt GMMs, rather than 5. CONCLUSION _
the assumption on isotropy of Gaussian distributionn this paper, we have proposed to learn GMM from train-
[15]. ing fixations, for the top-down feature of face, on saliency

e The standard deviation of the learnt GMMs decreasedetection of face images. Then, combined with convention-

along with the increase of face scales, while the Gaus@! bottom-up features (i.e., color, intensity, and oriéiotg,
sian distribution in [15] is simply assumed to be pro-0ur saliency detection method was developed upon the learnt

portional to the face size. GMM. Different from other state-of-the-art methods on uti-
lizing faces as the top-down feature for saliency detection
our GMM based saliency detection method benefits from the

4.2. Testing Result . .
learnt GMM to precisely model the saliency values of face
AUC. In Table 2, we tabulate the AUC results of all methods, 4 even facial feature regions.

ateach scale, in order to show the accuracy of saliency@redi 4 failitate saliency analysis of face and facial regions,
tion. Here, the average AUC values on all 75 test images arge established a database of 476 images with 823 faces from
provided. As seen from this table, our method outperformg,e existing databases. Working on our database, GMMs were
all other methods. Especially, there is 0.072 improvemeént Qg for top-down feature in saliency detection. Finalg

AUC over Zhaoet al. [19] at Scale 3, in which the bottom- o\ 4ated our method by the AUC, KL divergence, and NSS
up features and corresponding weights are the same as Qiiyrics. In these three metrics, our method performedibette

method. Such a significant improvement is possibly due tgqa gther conventional methods, especially when the face i
the three Gaussian components around the facial features,jj, large scale.

our learnt GMM. Moreover, we show in Figure 8 the ROCR f

curves of saliency prediction for Scale 3 by all methods. Al- ererences

S0, we Ccan see that the ROC curve of our method is SUPETIOf1] Ethel Matin, “Saccadic suppression: a review and anyaisl’ Psy-
to the conventional ones. chological bulletin vol. 81, no. 12, pp. 899, 1974.
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