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Learning Based Saliency Detection on Face Image

Abstract

The previous work has demonstrated that integrating tapadi@atures in bottom-up saliency methods can
improve the saliency prediction accuracy. Therefore, plaiger proposes to learn Gaussian mixture model (GMM)
distribution of eye fixations over faces as the top-downuesatand to learn their corresponding weights, for
saliency detection in face images. Specifically, we obtatfatabase of eye tracking over extensive face images,
via conducting an eye tracking experiment. With analysiepatracking database, we verify that fixations tend to
cluster around facial features, when viewing images withddaces. Thus, the GMM is learnt from fixations of eye
tracking data, for modeling the distribution of saliencyféwes and facial features. Then, in our method, the top-
down features (i.e., face and facial features) upon theghmt GMM are linearly combined with the conventional
bottom-up features (i.e., color, intensity, and oriewta)j for saliency detection. In the linear combination, we
argue that the weights corresponding to top-down featuesméls depend on the face size in images, and the
relationship between the weights and face size is thus tigeted via learning from the training eye tracking
data. Finally, experimental results validate that ourreay-based method is capable of dramatically improving

the accuracy of saliency prediction for face images.
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|. INTRODUCTION

CCORDING to the study on human visual system (HVS) [1], whepesson looks at a scene,
A she/he may pay much visual attention to a small region (thedparound a point of eye fixation
with high resolutions. The other regions, namely the peniphregions, are captured with little attention
at low resolutions, such that humans can survive from theqssing of tremendous visual data. Visual
attention therefore is a key to perceive the world around dnsnand it has been widely studied in
psychophysics, neurophysiology, and even computer visameties [2]. With computation on features
of either images or videos, saliency detection is an effeatvay to predict the human visual attention
attracted by different regions of a scene. As the output bérsey detection, the saliency map of an
image or a video frame has been widely applied in object tiete¢3], object recognition [4], image
retargeting [5], image quality assessment [6], and als@ehadeo compression [7].

The existing methods on saliency detection can be classifiedtwo categories: bottom-up and top-
down methods. The representative bottom-up method on tdegeitnage saliency is Itti's model [8],

which combines center-surround features of color, intgnand orientation together. Afterwards, Koch



(a) Fixation Heatmap (b) Fixations on face (c) Isotropic GM (d) Learnt GMM
Fig. 1. Examples for saliency prediction vs fixations in faegion, selected from [19]. The red dots represent the &iratrecorded by

the eye tracker. Note that both saliency and fixations béhontp face regions are displayed.

and Ullman [9] extended Itti's model by incorporating theofa-object inference in the saliency map.
Most recently, there has been extensive advanced work (#3314]) on bottom-up saliency detection.

In fact, top-down visual features play a crucial role in deti@ing the saliency of a scene. Hence,
the top-down saliency detection methods have been broaaltiresl in [15-17]. Cerfet al. [16] found
out that face is an important top-down feature to attractialisttention, as in their experiments faces
were fixed on in88.9% within first two fixations (7 subjects viewing 150 face imagekherefore, they
proposed to combine Viola & Jones (VJ) face detector [18hwiti's model [8] for improving the
saliency detection accuracy over face images. Since it iee measonable to learn how important face
is for attracting visual attention, several state-of-tnemethods [19-21] have been proposed to apply
machine learning algorithms in top-down saliency detectd Cerf's work [16]. For example, Zhao
[21] utilized the fixations on face images to quantify the gieiof the face channel on attracting visual
attention. Most recently, Jiang al. [22] has extended Cerf’'s work [16] to saliency detection iscane
with multiple faces, i.e., saliency detection in a crowd.their work, multiple kernel learning (MKL)
is applied to learn a more robust discrimination betweeresabnd non-salient regions in multi-face
scenes, for detecting saliency in a crowd.

Although the existing work has taken into account one or nfaces on saliency detection, it does not
explore the distribution of eye fixations within faces. A®win in Figure 1, a simple isotropic Gaussian
model (GM) assumption for saliency distribution in face ,[P4] has the limitation on modeling visual
attention attracted by faces. As can be seen in this figurapfages with small face, non-isotropic GM
IS more accurate in modeling saliency distribution insigieef For images with large face, a single GM is
not effective, as the fixations tend to cluster around theafdeatures (e.g., eyes). Accordingly, saliency
distribution, in the form of Gaussian mixture model (GMMgad to be learnt from eye fixations on face
images. Figure 1-(d) shows that the saliency with the le@MM distribution is more consistent with the

ground truth visual attention. Specifically, one non-igptc Gaussian component should be utilized for



images with small face, whereas more than one componentsecapplied for images with large faces.
This paper thereby proposes a learning-based saliencgtibetanethod, which learns various GMMs
and the corresponding weights across different face ‘sif@spredicting visual attention in face images.

The main contributions of this paper are listed as follows:

« We establish a large eye tracking database for visual aiteminalysis on face images, in which
510 images with faces at different sizes were viewed by 24estd The ground truth fixations on
viewing all 510 images are available anvw.ce.buaa.edu.cn/zum files/saliency_detection.html.
The analytical results on our database reveal that humandstéebe attracted by faces. Specifically,
when the face sizes are large, the majority of visual atbentin faces is drawn by facial features.
Such results motivate our learning-based method on sglidetection of face images.

« We model human visual attention attended to face regionsgu€&MM distribution, which is
learnt from eye fixations of training images in our datab&&eecifically, we utilize Expectation
Maximization (EM) algorithm [23] to learn GMM distributionf saliency in face region from the
ground truth fixations. Based on the learnt GMM, two featurarmels (on face and facial features)
are integrated as the top-down information in saliency atiete. For the integration, we argue that
weights of the proposed top-down feature channels deperdcensize, and they can also be learnt

from the training face images.

[I. DATABASE AND ANALYSIS

Face, as the top-down cue [16], is of great importance to diaual attention over face images. It is
further intuitive that the facial features, such as eyesg; ataact a large amount of visual attention. Thus,
this section concentrates on figuring out how significantffloe and facial features are to attract visual
attention. Section II-A discusses the eye tracking damlves established for the statistical analysis.
In Section 11-B, a method on automatically extracting theefand facial features is presented, as the
preliminary for our statistical analysis of visual attemti Section 1I-C analyses the importance of face

and facial features to visual attention, via investigating data of our eye tracking database.

A. Database of eye tracking on face images

For the analysis of visual attention on face images, we ccieduthe eye tracking experiment to
establish a database of eye tracking on various face imagesur database, 510 face images were
randomly selected from Google with the following criter{d) The original resolution of all images is
1920 x 1080. (2) All images contain only one frontal face, in which thening degree of head is less

than45°. (3) The sizes of faces in 510 images vary frorfi016 to 0.3018. Figure 2 shows the various

LIn this paper, face size means the proportion of pixel nunafehe region to that of whole image.
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Fig. 2. The distribution of face sizes in all 510 images, vehttre images are sorted by increased face sizes.

sizes of faces across those 510 images. Note that the imadggure 2 are sorted in accordance with
the ascending order of their face sizes.

There were a total of 24 subjects (14 male and 10 female, tbge fagm 19 to 35) served as observers
in the eye tracking experiment. These subjects were seldoben Beihang University and Microsoft
Research Asia Campuses. All subjects have either corresteshcorrected normal eyesight. Note that
two among 24 subjects were experts, who worked on the rdséatd of saliency detection. The other
22 subjects did not have any background in saliency detectind they were native to the purpose of
the eye tracking experiment.

In the eye tracking experiment, a Tobii TX300 eye tracketegnated with a monitor of 23-inch LCD
displaying screen, was used to record the eye movement ahplesaate of 300 Hz. The resolution of
the monitor was set to bE920 x 1080, the same as the resolution of images. All subjects weredeat
an adjustable chair at a distance6ofcm from the monitor of the eye tracker. Therefore, the visumgle
of the stimuli was abou®6.8° x 46.0°. Before the experiment, subjects were instructed to perftre
9-point calibration for the eye tracker. During the expeat) each image was presented for 4 seconds,
followed by a 2-second black image for a drift correctionl #\lbjects were asked to free-view each face
image. To avoid eye fatigue, the images were equally dividéal 3 groups, each of which contained
170 images. After viewing one group of images, subjects h&dnainute rest, and then were required
to recalibrate the eye tracker before viewing the next groupnages. Note that the displaying orders
of displaying groups and images in each group were both randofurther reduce the influence of eye
fatigue on eye tracking results.

After the experiment, 151,511 fixations were collected.rAgely, each image had about 300 fixations.
All the images, eye tracking data, and corresponding Matlade are available on the Web to provide

the ground truth data for saliency detection research.

B. Automatic detection on face and facial features

For analyzing the eye fixations on different parts of face, ikgions for face and facial features have

to be extracted in a face image. Generally speaking, ouaetin technique is based on a real-time face
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Fig. 3. Proportions of eye fixations and pixel numbers for régions of face and background.
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alignment method [24]. To be more specific, several key feapoints obeying the point distribution
model (PDM) are located in an image using the method in [24liclw combines the local detection
(texture information) and global optimization (facial wtture) together. Here, 66 key feature points,
produced by the PDM, are connected to precisely identifydietours and regions of face and facial

features.

C. Analysis of visual attention on face and facial features

Now, we move to analyzing visual attention on face and fafgatures, based on the statistics of our
eye tracking database. Note that all 510 images with 151fjsafions are used for the statistical analysis.
In order to quantify visual attention on face, we plot in FigB the percentages of fixations over all
510 images falling into face and background, respectivély.also plot in Figure 3 the proportions of
pixels belonging to face and background, respectivelyeNbat faces were extracted using the method
mentioned above. From this figure, we can see that althoucgs faveragely take up.7% of whole
images, they attraci2.3% of eye fixations. This verifies that the visual attention ocefés significantly
more than that on background.

Beyond, there is an insight that visual attention on faceeases along with the enlarged face size
in the image. To validate such an insight, we show in Figurdael groportions of fixations on faces
with different sizes, for all 510 images in our database. A3 be seen from this figure, all points for
proportion of fixations on face are above the random hit cuH&re, the random hit curve means the
probability that a fixation randomly falls into the regionfate. Again, this implies that face is with rather
large saliency in an image. Besides, one may see from Figthiat4he increase of fixation fitting curve
is much faster than that of random hit, alongside the enthfgee size. Therefore, it can be concluded
that much more attention is paid to face once the face is deate large size.

Next, we discuss the statistical analysis on the eye fixatfafling into different regions of face, to
investigate the visual saliency of facial features, i.eft éye, right eye, nose, and mouth. It is obvious
that the facial features are of great significance to visti@indon, when the image is displayed with

a close up view of face. Thus, it is interesting to find out thxatfon proportions of facial features at
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Fig. 4. Statistical results on fixations belonging to facelifierent sizes for all 510 images. Note that the values ofie&@ and horizontal
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the proportion for fixations randomly falling into the facegion. Obviously, it is the same as the proportion of faceorego the whole

image.

various face sizes. Figure 5 shows the proportions of firation each facial feature versus face sizes,
over all 510 images. From this figure, we can find out that mttention is drawn in all facial features
than the random hit. Besides, it can be also observed thdixtson fitting curves for facial features,
especially eyes, increase more sharply than the randomvhén face approaches large size. However,
there is no proportion growth of fixations on nose regions fpiobably because the visual attention shifts
from face center (i.e., nose) to other facial features, sischyes. In general, we can draw the conclusion
that facial features of eyes and mouth are more salient, werfiace has a large size in the image.
Together, Figures 3, 4, and 5 suggest that face and factalkésahave potential on drawing the majority
of attention, and that the visual attention on face and Fdemtures (except the nose) rises along with
the enlarged face size. Therefore, both face and facialifesitneed to be taken into consideration for
saliency detection, and the weights corresponding to thesechannels should be relevant to their face
sizes. In the next section, the proposed method is to bedmtexl, which adds the channels of face and

facial features to conventional Itti's model [8].

Ill. THE PROPOSED METHOD

This section mainly works on the proposed method for modediamliency on face and facial features.
In Section 3.1, we discuss preprocessing on the fixationkefoning GMM. Next, GMM is learnt from
the preprocessed training fixations, to be discussed indpe8t2. Then, we present in Section 3.3 the
saliency detection method based on the learnt GMM. FinallySection 3.4 we propose the way of

obtaining optimal weights learnt from our database.



0.3 0.3

0.25¢ 1 0.25
5 2
£ 02} £ 02}
2 9
@
£0.15¢ =015
g 5
o =
T 01 1 T 0.1f i
(TR L .

0.05F = Fixation fitting 0.05] v = Fixations fitting

X ====Random hit ====Random hit
0

0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4

Face Size Face Size
(a) Righteye (b) Lefteye
0.25 T T T 0.2 T T T
== ixation fitting == -ixation fitting
:
0.21 1 s
) 5015
%] 3
o L <}
Z0.45r %" =
£ . c
@ = @ 0.1
2 01F S
2 g
. S L 0.05
0.05 %
-
0 0
0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4
Face Size Face Size
(c) Nose (d) Mouth

Fig. 5. Fixations versus size of each facial feature for &40 fmages. Note that the values of vertical axis are portairfixations falling

into each facial feature, whereas the values of horizonts stand for portions of face size in an image. Here, eachtpoieans the
proportion of fixations belonging to the corresponding dhdeature at one image. Then, the red line is the linear dittorve on those
points. Besides, the green line of random hit indicates phaportion for fixations randomly fall into the facial featuregion, such that it

is the same as the proportion of facial feature size to thelavimage size.

A. Preprocessing

For learning GMM, preprocessing has to be conducted to reaétband normalize the eye fixations.
Specifically, to avoid the uncertainty of face positions iffiedent images, all fixations belonging to face
region have to be calibrated in the following way.

As seen from Figure 6, Point A, the upper left point of PDM, & t be the original point of the
fixation coordinate in the face. Then, the coordindtes)) of fixations are calibrated to be*, y*) via

translation:

¥ =1 —1x4

(1)

Y =y —ya,
where (x4, y4) is the coordinate for Point A.
Next, to deal with varying sizes of faces and facial featufigations need to be normalized based on
the width of face. To be more specific, the Euclidean distdnoetween Pointsd and B (as shown in

Figure 6) is calculated as the unit length for fixation cooaties. As such, the normalized coordinates
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Fig. 6. Coordinate calibration and normalization on 66apd&DM.

(«',y’) can be calculated as follows, x

l
' (@)

Finally, the positions for eye fixations attended to faces be represented in a uniformed coordinate
system. This way, all fixations in faces from different imagsn be processed together for learning
GMM.

B. Learning GMM
As aforementioned, the facial features attract a large amofivisual attention, once the face is of

large size. Therefore, we can use the GMM to model the faegtiure channel, which has large-valued
saliency within facial features. Assuming that= (', %) is the calibrated and normalized coordinate of

point (z,y) within a face, the GMM can be written as a linear superpasiibGaussian components in

the form: p
> mNa(pg Sn), 3)

and -
Ni() = exp {3 (x = 1) "5 (x — ) @

where 7, p,, 3j are the mixing proportion, mean, and variance of ththh Gaussian component. In
(3), K is the total number of Gaussian components.

In fact, the GMM can be learnt from fixations of eye trackingadeHere, the EM algorithm [23]
is applied to learn the GMM on the calibrated and normalizgdtions falling into face regions. For
the face channel, the similar way is utilized to learn GMMtulmition of face, where there is only
one Gaussian component corresponding to face. For thet lesuits of GMMs on both face and facial

feature channels, refer to Section IV.

C. Saliency detection

Given the learnt GMM, the top-down conspicuity maps on fatanoel §) and facial feature channel
(G), denoted byC(F) andC(G), can be worked out on the basis of (3) and (4). However, faeisey
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Fig. 7. Procedure of our learning-based saliency detectiethod.

detection the mean valugs, in (3) and (4) are replaced by the central points of faciatuess, when
the number of Gaussian components is 4. This is because nh@yeexist the deviation between the
statistical centroids of Gaussian components and the teéeteentral points of facial features (i.e., eyes,
nose, and mouth). Note that the face detection method isiomext in Section 2.2.

Next, similar to [16], the top-down conspicuity maps areegrated with the bottom-up conspicuity
maps of color C), intensity {), and orientation @). As a result, the final saliency maypl can be
generated by

M = wcC(C) + w;C(I) + wol(0) + wrC(F) + waC(G), (5)

where((-) is the normalized conspicuity map on each feature chart€r), C(I), andC(O) can be

obtained by the method in [9], where&$F) and C(G) need to be yielded upon the learnt GMM as
aforementioned. In additiony = [w¢, wr, wo, wr, we]? are weights corresponding to feature channels.
They can be computed by least square fitting. For more detailsomputing these weights, refer to the
next subsection. Figure 7 shows an example of overall prgeeah our learning-based saliency detection

method.

D. Learning optimal weights

Now, the remaining task for saliency detection with (5) isi&dermine weightsy = [w¢, w;, wo, wr,wa]*
for each conspicuity map. In this subsection, we focus onctimaputation on learning optimal weights
w from the training data of our eye tracking database.gtbe the vectorized human fixation map of

a training image. Givemn,,, we follow the way of [21] to obtain weighte for each training image, by
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solving the following/,-norm optimization formulation:
argmin [|[Vw —myl|2, st ||w|i=1,w >0, (6)

whereV is a matrix with each column denoting the vectorized congpiamaps ofC, I, O F, andG.
To solve (6), the disciplined convex programming approd®] s utilized in our method. Then, the
optimal weights can be obtained for each single traininggeadote that the weight optimization in our
method is different from that of [21] which works on the wetglby fitting all training images.

Next, given the learnt weights for each individual image, fivel that they are dependent on face
sizes. This is also consistent with the observation of 8adiiC, in which both face and facial features
tend to attract much more attention when face is with large.sThereby, it is worth figuring out the
relationships between and face size, and between; and face size. Here, the polynomial fitting is
applied to model such relationship. Consequently, assyitiiat s is the face sizewr andwg can be

expressed as follows,

wp(s) = a;s’, (7
=0
and
I .
wa(s) =Y bis', 8)
=0

where {a;}!_, and {b;}._, are the parameters of quadratic functions to fit dgr and w¢, respectively.
As analyzed in Section IV] = 4 is capable of producing the precise fitting on the pairs ofgivei
and face size. Therefore, the fourth order polynomial fittim applied in this paper, and the values for
{a;}i, and{b;}}_, are to be discussed in Section IV.

After achievingwr andwg, other weightswe, w;, andwo are averaged over all training images to
acquire the ratios between them. Then, ongeand w; have been calculated by (7) and (8)¢, wy,
andwo can be determined according to the averaged ratios, withdhstraint on|w||, = 1. Values for
the learnt parameters and ratios to yield weightare to be reported in Section IV. Finally, the saliency

map of a face image can be worked out via (5) with the learntr@tweights.

V. EXPERIMENTAL RESULTS

In this section, experimental results are presented taat@athe saliency detection performance of our
method. In Section IV-A, we provide the training results be GMMs and weights, which were learnt
from ground truth fixations. In Section IV-B, we show the tegtresults of our method, in comparison
with other 8 state-of-the-art methods: I¢i al. [8], Cerf et al. [16], Zhaoet al. [21], Juddet al. [19],
Duanet al. [11], Hou et al. [12], Erdemet al. [14], and Zhanget al. [13]. In the experiments, the area
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under ROC curve (AUC), normalized scanpath saliency (N&8), [and linear correlation coefficient
(CC) [2] on all test images, were compared for evaluatingait®uracy of saliency detection. In addition,

the saliency maps of several test images are also providetthéocomparison.

A. Training Result

In our experiment, we divided our eye tracking database Ofifiages (as presented in Section 2.1)
into training and test sets. For the training set, 360 imag#s 106,067 fixations were selected. For the
test set, the remaining 150 images were chosen, which hgdd4ifixations. Note that both training and
test sets include the same proportions for similar-sizegddaln addition, there is no overlap between
the training and test sets.

Learnt GMMSs. In our experiments, we used the method of Section I1I-B &onghe GMMs for both
face and facial feature channels of saliency detectiom fitee ground truth fixations of all 360 training
images. For the face channel, the GMM was learnt with only @aassian component. The mean of the
Gaussian component is simply assumed to be the positions# tip point in each image (detected by
the face alignment method [24]), as it can be seen as theragiface. Then, the covariance matrix for

the Gaussian component was learnt from training data, analties are

0.024 0
0 0.039

9)

—_

As can be seen above, there exists the anisotropy in learmi§ Mather than the assumption on isotropy
of Gaussian distribution in [16].

For the facial feature channel, the number of Gaussian coermie has to be confirmed first. To
determine the number of Gaussian components, we plot iné&gthe distributions of the learnt GMMs,
with different numbers of Gaussian components. From thigdigwe can see that the contours for GMMs
with more than three components are similar. So, four-carapp GMM is utilized in our saliency
detection method. This is also consistent with our analysiSection I[I-C that visual attention tends to
cluster around facial features (i.e., left and right eyesen and mouth). Hence, we assume that means
of Gaussian components are the positions of the centersiall features. The parameters of the learnt
GMM in our learning-based method are tabulated in Table I.

Learnt weights. Next, we obtained the optimal weight of each channel fordbtespicuity maps of
each individual image, using the optimization method oft®eclll-D. As aforementioned, the optimal
weightswyr andwg for face and facial feature channels depend on the face Bigares 9-(a) and -(b)
plot the pairs of the face size and the corresponding optimgadjht. Also, the curves on fitting those
pairs of weight and face size are shown in Figures 9-(a) amd We further show in Figure 9-(c) the

Pearson’s correlation coefficient (PCC) [27] on evaluatioa fitting performance. It can be seen from



THE PARAMETERS OF THE LEARNTGMM

TABLE |

12

k=1 k=2 k=3 k=4
features right eye left eye nose mouth
Tk 0.192 0.306 0.222 0.280
o ( 0.007 0.001 > ( 0.013 —0.002 > ( 0.035 0.003 > ( 0.011 —0.001 >
0.001  0.009 —0.002 0.012 0.003 0.032 —0.001 0.033

(@) 1 component
Fig. 8.

(b) 2 components  (c) 3 components  (d) 4 components  (e) 5 components
Contours of GMMs with various numbers of Gaussian ponents, learnt in our experiments.

(f) 6 components

this figure that PCC is nearly convergent for both face andffdeature channels, once the the order of
polynomial fitting is greater than 3. In our experiments, filngrth order polynomial fitting were therefore
adopted. After the fourth order polynomial fitting, the vedufor fitting coefficientsus, a4, as, as, aq
and aq of (7) are6345.8, —2931.2, 491.0, —36.4, and 1.1, and values foibs, b4, bs, by, by and b, of

(8) are —6474.3, 3146.4, —545.1, 38.6, and —0.1. Beyond, the ratio forve : w; : we is 8 : 3 : 30,

as the averaged optimal weights of color, intensity, andntation channels a@016, 0.006, and0.06.
Finally, the saliency maps of all test images can be workddogy5), with the aforementioned GMMs

and optimal weights.

B. Testing Results

AUC. In order to quantify the accuracy of saliency detection, aleutate in Table Il the AUC results
of our and other 8 methods. In this table, the averaged AUGegalith its standard deviations on all

150 test images are listed. As seen from this table, the rdsthith top-down features, i.e., Cesf al.
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face size for all 360 test images, and the red lines are thehfaunder polynomial curves on fitting all the blue dots. I, he orders of

polynomial fitting curves versus Pearson’s correlationffc@ent of fitting are plotted.
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Fig. 10. Average ROC curves for all 150 test face images, byaod other state-of-the-art methods.

[16], Juddea al. [19], Zhaoea al. [21] and ours, perform better than the bottom-up methodss Eh
because face, as a high-level feature, is crucial for impgpgaliency detection accuracy. Furthermore,
our method outperforms all other state-of-the-art top+l@md bottom-up methods in terms of AUC.
Especially, there is 0.02 AUC improvement over Zlehal. [21], in which the the top-down face channel
is integrated and its corresponding weight is learnt framming data. The possible reason for our method
outperforming Zhacet al. [21] is that the GMM distribution of saliency of face regios learnt from
training data and then incorporated in our method, and tlaimeights of top-down channels are learnt
regarding face size. Moreover, we show in Figure 10 the RO@esuof saliency detection by our and
all other state-of-the-art methods. Clearly, our methosuigerior to other methods.

NSS and CC. For a more comprehensive evaluation [28], we move to the eoisgn of NSS and
CC metrics for saliency detection on all test images. NSSimputed to imply the relevance between
fixation locations and saliency predictions, and CC meastine strength of a linear relationship between
human fixation map and predicting saliency map. The aver&ti8 and CC results (with their standard
deviations) of saliency detection by our and other statthefart methods are also tabulated in Table 1.
Note that methods with a larger NSS value or a CC value closeltd, can better predict the human
fixations. Therefore, it can be seen from this table that oethiwd performs significantly better than other
state-of-the-art methods, in terms of both NSS and CC nsetas there are at least 1.02 improvement
of NSS and 0.17 enhancement of CC in our method.

Saliency map. Figure 11 shows the saliency maps of 8 randomly selectedrntesjes, detected by
eye tracking data, our, and other 8 methods. From this figueecan see that compared to all other
methods, our method is able to well locate the saliency regionuch closer to the maps of human
fixations. To be more specific, for images with small face. (itkee first and second rows), the saliency
maps by our method are much more similar to those of humanidngtas the learnt non-isotropic
Gaussian distribution of saliency in face region is adopteat images with large face (i.e., from third

to eighth rows), our method yields the appropriate mapschvinell reflect the saliency distribution of
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Metrics | Our method Itti[8] Cerf[16] Judd[19] | Zhao[21] | Duan[11l] | Hou[1l2] | Erdem[14]| Zhang[13]
AUC 0.90(0.04) | 0.78(0.10)| 0.86(0.06)| 0.86(0.06)| 0.88(0.05)| 0.85(0.06)| 0.70(0.16)| 0.84(0.06) | 0.82(0.11)
NSS 3.38(0.78) | 1.08(0.54)| 1.68(0.47)| 1.400.32) | 2.36(0.73)| 1.56(0.59) | 0.71(0.74)| 1.64(0.87)| 1.38(0.73)
CcC 0.80(0.08) | 0.29(0.13)| 0.46(0.09)| 0.420.07) | 0.63(0.10)| 0.41(0.13)| 0.19(0.20)| 0.46(0.21) | 0.37(0.18)
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(d) Itti (e) Cerf  (f) Judd (g) Zzhao (h) Duan (i) Hou (j) Zhang (k) Erdem
Saliency maps of several face images, produced bymad other state-of-the-art methods as well as by humaridisatNote

(@) Input (b) Human (c) Ours
Fig. 11.

that these images (from top to bottom) are sorted in the d#wgrorder of face sizes.

regions of face and facial features using the learnt GMM.id=s our method is capable of accurately
predicting human attention on faces with different sizesces the optimal wights for face and facial

feature channels in our method can be adjusted accordingctodize.

V. CONCLUSIONS
For face images, we have proposed in this paper a salienegtoet method to integrate the top-

down channels of face and facial features, in which GMMs &p-down saliency distribution and the
corresponding weights for each top-down channel are |deont the training fixations. Combined with
the conventional bottom-up features (i.e., color, intghsind orientation), our saliency detection method
is capable of accurately predicting human visual attentanface images. It is because our method
benefits from the learnt GMM distribution of attention ondacather than the simply assumed isotropic
Gaussian distribution of saliency over face regions in o#tate-of-the-art top-down methods.

To facilitate saliency analysis of face images, we firstldighed an eye tracking database of 510 face
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images. Working on our database, GMMs were learnt for toprdohannels of face and facial features
in saliency detection. Moreover, weights correspondingoi@down face and facial feature channels
were optimized by learning the relationship between theghisi and face size, since the amount of
visual attention on face is relevant to the face size. Aale evaluated the effectiveness of our method
with three commonly used metrics, i.e., the AUC, CC, and N&Sa result, our method significantly
advanced state-of-the-art saliency detection on faceesyaags our method drastically outperformed other
8 state-of-the-art methods, in terms of AUC, CC, and NSS.
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