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Learning Based Saliency Detection on Face Images

Abstract

The previous work has demonstrated that integrating top-down features in bottom-up saliency methods can

improve the saliency prediction accuracy. Therefore, thispaper proposes to learn Gaussian mixture model (GMM)

distribution of eye fixations over faces as the top-down feature and to learn their corresponding weights, for

saliency detection in face images. Specifically, we obtain adatabase of eye tracking over extensive face images,

via conducting an eye tracking experiment. With analysis oneye tracking database, we verify that fixations tend to

cluster around facial features, when viewing images with large faces. Thus, the GMM is learnt from fixations of eye

tracking data, for modeling the distribution of saliency infaces and facial features. Then, in our method, the top-

down features (i.e., face and facial features) upon the the learnt GMM are linearly combined with the conventional

bottom-up features (i.e., color, intensity, and orientation), for saliency detection. In the linear combination, we

argue that the weights corresponding to top-down feature channels depend on the face size in images, and the

relationship between the weights and face size is thus investigated via learning from the training eye tracking

data. Finally, experimental results validate that our learning-based method is capable of dramatically improving

the accuracy of saliency prediction for face images.

Index Terms

Machine learning, Saliency detection, GMM

I. INTRODUCTION

ACCORDING to the study on human visual system (HVS) [1], when aperson looks at a scene,

she/he may pay much visual attention to a small region (the fovea) around a point of eye fixation

with high resolutions. The other regions, namely the peripheral regions, are captured with little attention

at low resolutions, such that humans can survive from the processing of tremendous visual data. Visual

attention therefore is a key to perceive the world around humans, and it has been widely studied in

psychophysics, neurophysiology, and even computer visionsocieties [2]. With computation on features

of either images or videos, saliency detection is an effective way to predict the human visual attention

attracted by different regions of a scene. As the output of saliency detection, the saliency map of an

image or a video frame has been widely applied in object detection [3], object recognition [4], image

retargeting [5], image quality assessment [6], and also image/video compression [7].

The existing methods on saliency detection can be classifiedinto two categories: bottom-up and top-

down methods. The representative bottom-up method on detecting image saliency is Itti’s model [8],

which combines center-surround features of color, intensity, and orientation together. Afterwards, Koch
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Fig. 1. Examples for saliency prediction vs fixations in faceregion, selected from [19]. The red dots represent the fixations recorded by

the eye tracker. Note that both saliency and fixations belonging to face regions are displayed.

and Ullman [9] extended Itti’s model by incorporating the proto-object inference in the saliency map.

Most recently, there has been extensive advanced work (e.g., [10–14]) on bottom-up saliency detection.

In fact, top-down visual features play a crucial role in determining the saliency of a scene. Hence,

the top-down saliency detection methods have been broadly studied in [15–17]. Cerfet al. [16] found

out that face is an important top-down feature to attract visual attention, as in their experiments faces

were fixed on in88.9% within first two fixations (7 subjects viewing 150 face images). Therefore, they

proposed to combine Viola & Jones (VJ) face detector [18] with Itti’s model [8] for improving the

saliency detection accuracy over face images. Since it is more reasonable to learn how important face

is for attracting visual attention, several state-of-the-art methods [19–21] have been proposed to apply

machine learning algorithms in top-down saliency detection of Cerf’s work [16]. For example, Zhao

[21] utilized the fixations on face images to quantify the weight of the face channel on attracting visual

attention. Most recently, Jianget al. [22] has extended Cerf’s work [16] to saliency detection in ascene

with multiple faces, i.e., saliency detection in a crowd. Intheir work, multiple kernel learning (MKL)

is applied to learn a more robust discrimination between salient and non-salient regions in multi-face

scenes, for detecting saliency in a crowd.

Although the existing work has taken into account one or morefaces on saliency detection, it does not

explore the distribution of eye fixations within faces. As shown in Figure 1, a simple isotropic Gaussian

model (GM) assumption for saliency distribution in face [16, 21] has the limitation on modeling visual

attention attracted by faces. As can be seen in this figure, for images with small face, non-isotropic GM

is more accurate in modeling saliency distribution inside face. For images with large face, a single GM is

not effective, as the fixations tend to cluster around the facial features (e.g., eyes). Accordingly, saliency

distribution, in the form of Gaussian mixture model (GMM), need to be learnt from eye fixations on face

images. Figure 1-(d) shows that the saliency with the learntGMM distribution is more consistent with the

ground truth visual attention. Specifically, one non-isotropic Gaussian component should be utilized for
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images with small face, whereas more than one components canbe applied for images with large faces.

This paper thereby proposes a learning-based saliency detection method, which learns various GMMs

and the corresponding weights across different face sizes1, for predicting visual attention in face images.

The main contributions of this paper are listed as follows:

• We establish a large eye tracking database for visual attention analysis on face images, in which

510 images with faces at different sizes were viewed by 24 subjects. The ground truth fixations on

viewing all 510 images are available onwww.ee.buaa.edu.cn/xumfiles/saliency detection.html.

The analytical results on our database reveal that humans tend to be attracted by faces. Specifically,

when the face sizes are large, the majority of visual attention on faces is drawn by facial features.

Such results motivate our learning-based method on saliency detection of face images.

• We model human visual attention attended to face regions using GMM distribution, which is

learnt from eye fixations of training images in our database.Specifically, we utilize Expectation

Maximization (EM) algorithm [23] to learn GMM distributionof saliency in face region from the

ground truth fixations. Based on the learnt GMM, two feature channels (on face and facial features)

are integrated as the top-down information in saliency detection. For the integration, we argue that

weights of the proposed top-down feature channels depend onface size, and they can also be learnt

from the training face images.

II. DATABASE AND ANALYSIS

Face, as the top-down cue [16], is of great importance to drawvisual attention over face images. It is

further intuitive that the facial features, such as eyes, may attract a large amount of visual attention. Thus,

this section concentrates on figuring out how significant theface and facial features are to attract visual

attention. Section II-A discusses the eye tracking database we established for the statistical analysis.

In Section II-B, a method on automatically extracting the face and facial features is presented, as the

preliminary for our statistical analysis of visual attention. Section II-C analyses the importance of face

and facial features to visual attention, via investigatingthe data of our eye tracking database.

A. Database of eye tracking on face images

For the analysis of visual attention on face images, we conducted the eye tracking experiment to

establish a database of eye tracking on various face images.In our database, 510 face images were

randomly selected from Google with the following criteria.(1) The original resolution of all images is

1920 × 1080. (2) All images contain only one frontal face, in which the turning degree of head is less

than45◦. (3) The sizes of faces in 510 images vary from0.0016 to 0.3018. Figure 2 shows the various

1In this paper, face size means the proportion of pixel numberof the region to that of whole image.
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Fig. 2. The distribution of face sizes in all 510 images, where the images are sorted by increased face sizes.

sizes of faces across those 510 images. Note that the images in Figure 2 are sorted in accordance with

the ascending order of their face sizes.

There were a total of 24 subjects (14 male and 10 female, the ages from 19 to 35) served as observers

in the eye tracking experiment. These subjects were selected from Beihang University and Microsoft

Research Asia Campuses. All subjects have either correctedor uncorrected normal eyesight. Note that

two among 24 subjects were experts, who worked on the research field of saliency detection. The other

22 subjects did not have any background in saliency detection, and they were native to the purpose of

the eye tracking experiment.

In the eye tracking experiment, a Tobii TX300 eye tracker, integrated with a monitor of 23-inch LCD

displaying screen, was used to record the eye movement at a sample rate of 300 Hz. The resolution of

the monitor was set to be1920×1080, the same as the resolution of images. All subjects were seated on

an adjustable chair at a distance of60 cm from the monitor of the eye tracker. Therefore, the visualangle

of the stimuli was about26.8◦ × 46.0◦. Before the experiment, subjects were instructed to perform the

9-point calibration for the eye tracker. During the experiment, each image was presented for 4 seconds,

followed by a 2-second black image for a drift correction. All subjects were asked to free-view each face

image. To avoid eye fatigue, the images were equally dividedinto 3 groups, each of which contained

170 images. After viewing one group of images, subjects had a5 minute rest, and then were required

to recalibrate the eye tracker before viewing the next groupof images. Note that the displaying orders

of displaying groups and images in each group were both random to further reduce the influence of eye

fatigue on eye tracking results.

After the experiment, 151,511 fixations were collected. Averagely, each image had about 300 fixations.

All the images, eye tracking data, and corresponding Matlabcode are available on the Web to provide

the ground truth data for saliency detection research.

B. Automatic detection on face and facial features

For analyzing the eye fixations on different parts of face, the regions for face and facial features have

to be extracted in a face image. Generally speaking, our extraction technique is based on a real-time face
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Fig. 3. Proportions of eye fixations and pixel numbers for theregions of face and background.

alignment method [24]. To be more specific, several key feature points obeying the point distribution

model (PDM) are located in an image using the method in [24], which combines the local detection

(texture information) and global optimization (facial structure) together. Here, 66 key feature points,

produced by the PDM, are connected to precisely identify thecontours and regions of face and facial

features.

C. Analysis of visual attention on face and facial features

Now, we move to analyzing visual attention on face and facialfeatures, based on the statistics of our

eye tracking database. Note that all 510 images with 151,511fixations are used for the statistical analysis.

In order to quantify visual attention on face, we plot in Figure 3 the percentages of fixations over all

510 images falling into face and background, respectively.We also plot in Figure 3 the proportions of

pixels belonging to face and background, respectively. Note that faces were extracted using the method

mentioned above. From this figure, we can see that although faces averagely take up5.7% of whole

images, they attract62.3% of eye fixations. This verifies that the visual attention on face is significantly

more than that on background.

Beyond, there is an insight that visual attention on face increases along with the enlarged face size

in the image. To validate such an insight, we show in Figure 4 the proportions of fixations on faces

with different sizes, for all 510 images in our database. As can be seen from this figure, all points for

proportion of fixations on face are above the random hit curve. Here, the random hit curve means the

probability that a fixation randomly falls into the region offace. Again, this implies that face is with rather

large saliency in an image. Besides, one may see from Figure 4that the increase of fixation fitting curve

is much faster than that of random hit, alongside the enlarged face size. Therefore, it can be concluded

that much more attention is paid to face once the face is viewed at a large size.

Next, we discuss the statistical analysis on the eye fixations falling into different regions of face, to

investigate the visual saliency of facial features, i.e., left eye, right eye, nose, and mouth. It is obvious

that the facial features are of great significance to visual attention, when the image is displayed with

a close up view of face. Thus, it is interesting to find out the fixation proportions of facial features at
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Fig. 4. Statistical results on fixations belonging to face atdifferent sizes for all 510 images. Note that the values of vertical and horizontal

axes are proportions of fixations and size belonging to face within an image. Here, each point stands for the proportion offixations

belonging to face at one image. Then, the red line is the linear fitting curve on those points. Besides, the green line of random hit indicates

the proportion for fixations randomly falling into the face region. Obviously, it is the same as the proportion of face region to the whole

image.

various face sizes. Figure 5 shows the proportions of fixations on each facial feature versus face sizes,

over all 510 images. From this figure, we can find out that more attention is drawn in all facial features

than the random hit. Besides, it can be also observed that thefixation fitting curves for facial features,

especially eyes, increase more sharply than the random hit,when face approaches large size. However,

there is no proportion growth of fixations on nose region. It is probably because the visual attention shifts

from face center (i.e., nose) to other facial features, suchas eyes. In general, we can draw the conclusion

that facial features of eyes and mouth are more salient, whenthe face has a large size in the image.

Together, Figures 3, 4, and 5 suggest that face and facial features have potential on drawing the majority

of attention, and that the visual attention on face and facial features (except the nose) rises along with

the enlarged face size. Therefore, both face and facial features need to be taken into consideration for

saliency detection, and the weights corresponding to thesetwo channels should be relevant to their face

sizes. In the next section, the proposed method is to be introduced, which adds the channels of face and

facial features to conventional Itti’s model [8].

III. T HE PROPOSED METHOD

This section mainly works on the proposed method for modeling saliency on face and facial features.

In Section 3.1, we discuss preprocessing on the fixations forlearning GMM. Next, GMM is learnt from

the preprocessed training fixations, to be discussed in Section 3.2. Then, we present in Section 3.3 the

saliency detection method based on the learnt GMM. Finally,in Section 3.4 we propose the way of

obtaining optimal weights learnt from our database.
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Fig. 5. Fixations versus size of each facial feature for all 510 images. Note that the values of vertical axis are portionsof fixations falling

into each facial feature, whereas the values of horizontal axis stand for portions of face size in an image. Here, each point means the

proportion of fixations belonging to the corresponding facial feature at one image. Then, the red line is the linear fitting curve on those

points. Besides, the green line of random hit indicates thatproportion for fixations randomly fall into the facial feature region, such that it

is the same as the proportion of facial feature size to the whole image size.

A. Preprocessing

For learning GMM, preprocessing has to be conducted to calibrate and normalize the eye fixations.

Specifically, to avoid the uncertainty of face positions in different images, all fixations belonging to face

region have to be calibrated in the following way.

As seen from Figure 6, Point A, the upper left point of PDM, is set to be the original point of the

fixation coordinate in the face. Then, the coordinates(x, y) of fixations are calibrated to be(x∗, y∗) via

translation: 





x∗ = x− xA

y∗ = y − yA,
(1)

where(xA, yA) is the coordinate for Point A.

Next, to deal with varying sizes of faces and facial features, fixations need to be normalized based on

the width of face. To be more specific, the Euclidean distancel between PointsA andB (as shown in

Figure 6) is calculated as the unit length for fixation coordinates. As such, the normalized coordinates
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Fig. 6. Coordinate calibration and normalization on 66-point PDM.

(x′, y′) can be calculated as follows, 









x′ =
x∗

l

y′ =
y∗

l
.

(2)

Finally, the positions for eye fixations attended to faces can be represented in a uniformed coordinate

system. This way, all fixations in faces from different images can be processed together for learning

GMM.

B. Learning GMM

As aforementioned, the facial features attract a large amount of visual attention, once the face is of

large size. Therefore, we can use the GMM to model the facial feature channel, which has large-valued

saliency within facial features. Assuming thatx = (x′, y′) is the calibrated and normalized coordinate of

point (x, y) within a face, the GMM can be written as a linear superposition of Gaussian components in

the form:
K
∑

k=1

πkNk(µk,Σk), (3)

and

Nk(x) = exp {−
1

2
(x− µk)

T
Σ

−1

k
(x− µk)}, (4)

whereπk, µk, Σk are the mixing proportion, mean, and variance of thek-th Gaussian component. In

(3), K is the total number of Gaussian components.

In fact, the GMM can be learnt from fixations of eye tracking data. Here, the EM algorithm [23]

is applied to learn the GMM on the calibrated and normalized fixations falling into face regions. For

the face channel, the similar way is utilized to learn GMM distribution of face, where there is only

one Gaussian component corresponding to face. For the learnt results of GMMs on both face and facial

feature channels, refer to Section IV.

C. Saliency detection

Given the learnt GMM, the top-down conspicuity maps on face channel (F) and facial feature channel

(G), denoted byC(F) andC(G), can be worked out on the basis of (3) and (4). However, for saliency
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Fig. 7. Procedure of our learning-based saliency detectionmethod.

detection the mean valuesµk in (3) and (4) are replaced by the central points of facial features, when

the number of Gaussian components is 4. This is because theremay exist the deviation between the

statistical centroids of Gaussian components and the detected central points of facial features (i.e., eyes,

nose, and mouth). Note that the face detection method is mentioned in Section 2.2.

Next, similar to [16], the top-down conspicuity maps are integrated with the bottom-up conspicuity

maps of color (C), intensity (I), and orientation (O). As a result, the final saliency mapM can be

generated by

M = wCC(C) + wIC(I) + wOC(O) + wFC(F) + wGC(G), (5)

whereC(·) is the normalized conspicuity map on each feature channel.C(C), C(I), andC(O) can be

obtained by the method in [9], whereasC(F) and C(G) need to be yielded upon the learnt GMM as

aforementioned. In addition,w = [wC , wI , wO, wF , wG]
T are weights corresponding to feature channels.

They can be computed by least square fitting. For more detailson computing these weights, refer to the

next subsection. Figure 7 shows an example of overall procedure on our learning-based saliency detection

method.

D. Learning optimal weights

Now, the remaining task for saliency detection with (5) is todetermine weightsw = [wC , wI , wO, wF ,wG]
T

for each conspicuity map. In this subsection, we focus on thecomputation on learning optimal weights

w from the training data of our eye tracking database. Letmh be the vectorized human fixation map of

a training image. Givenmh, we follow the way of [21] to obtain weightsw for each training image, by
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solving the followingℓ2-norm optimization formulation:

argmin
w

‖Vw−mh‖2, s.t. ||w||1 = 1,w ≥ 0, (6)

whereV is a matrix with each column denoting the vectorized conspicuity maps ofC, I, O F, andG.

To solve (6), the disciplined convex programming approach [25] is utilized in our method. Then, the

optimal weights can be obtained for each single training image. Note that the weight optimization in our

method is different from that of [21] which works on the weights by fitting all training images.

Next, given the learnt weights for each individual image, wefind that they are dependent on face

sizes. This is also consistent with the observation of Section II-C, in which both face and facial features

tend to attract much more attention when face is with large size. Thereby, it is worth figuring out the

relationships betweenwF and face size, and betweenwG and face size. Here, the polynomial fitting is

applied to model such relationship. Consequently, assuming that s is the face size,wF andwG can be

expressed as follows,

wF (s) =

I
∑

i=0

ais
i, (7)

and

wG(s) =

I
∑

i=0

bis
i, (8)

where{ai}Ii=1
and{bi}

I
i=1

are the parameters of quadratic functions to fit forwF andwG, respectively.

As analyzed in Section IV,I = 4 is capable of producing the precise fitting on the pairs of weight

and face size. Therefore, the fourth order polynomial fitting is applied in this paper, and the values for

{ai}4i=1
and{bi}4i=1

are to be discussed in Section IV.

After achievingwF andwG, other weightswC , wI , andwO are averaged over all training images to

acquire the ratios between them. Then, oncewF andwG have been calculated by (7) and (8),wC, wI ,

andwO can be determined according to the averaged ratios, with theconstraint on||w||1 = 1. Values for

the learnt parameters and ratios to yield weightsw are to be reported in Section IV. Finally, the saliency

map of a face image can be worked out via (5) with the learnt optimal weights.

IV. EXPERIMENTAL RESULTS

In this section, experimental results are presented to evaluate the saliency detection performance of our

method. In Section IV-A, we provide the training results on the GMMs and weights, which were learnt

from ground truth fixations. In Section IV-B, we show the testing results of our method, in comparison

with other 8 state-of-the-art methods: Ittiet al. [8], Cerf et al. [16], Zhaoet al. [21], Juddet al. [19],

Duanet al. [11], Hou et al. [12], Erdemet al. [14], and Zhanget al. [13]. In the experiments, the area
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under ROC curve (AUC), normalized scanpath saliency (NSS) [26], and linear correlation coefficient

(CC) [2] on all test images, were compared for evaluating theaccuracy of saliency detection. In addition,

the saliency maps of several test images are also provided for the comparison.

A. Training Result

In our experiment, we divided our eye tracking database of 510 images (as presented in Section 2.1)

into training and test sets. For the training set, 360 imageswith 106,067 fixations were selected. For the

test set, the remaining 150 images were chosen, which have 45,444 fixations. Note that both training and

test sets include the same proportions for similar-sized faces. In addition, there is no overlap between

the training and test sets.

Learnt GMMs. In our experiments, we used the method of Section III-B to learn the GMMs for both

face and facial feature channels of saliency detection, from the ground truth fixations of all 360 training

images. For the face channel, the GMM was learnt with only oneGaussian component. The mean of the

Gaussian component is simply assumed to be the position of nose tip point in each image (detected by

the face alignment method [24]), as it can be seen as the center of face. Then, the covariance matrix for

the Gaussian component was learnt from training data, and its values are

Σ1 =





0.024 0

0 0.039



 . (9)

As can be seen above, there exists the anisotropy in learnt GMMs, rather than the assumption on isotropy

of Gaussian distribution in [16].

For the facial feature channel, the number of Gaussian components has to be confirmed first. To

determine the number of Gaussian components, we plot in Figure 8 the distributions of the learnt GMMs,

with different numbers of Gaussian components. From this figure, we can see that the contours for GMMs

with more than three components are similar. So, four-component GMM is utilized in our saliency

detection method. This is also consistent with our analysisin Section II-C that visual attention tends to

cluster around facial features (i.e., left and right eyes, nose, and mouth). Hence, we assume that means

of Gaussian components are the positions of the centers of facial features. The parameters of the learnt

GMM in our learning-based method are tabulated in Table I.

Learnt weights. Next, we obtained the optimal weight of each channel for theconspicuity maps of

each individual image, using the optimization method of Section III-D. As aforementioned, the optimal

weightswF andwG for face and facial feature channels depend on the face size.Figures 9-(a) and -(b)

plot the pairs of the face size and the corresponding optimalweight. Also, the curves on fitting those

pairs of weight and face size are shown in Figures 9-(a) and -(b). We further show in Figure 9-(c) the

Pearson’s correlation coefficient (PCC) [27] on evaluationthe fitting performance. It can be seen from



12

TABLE I

THE PARAMETERS OF THE LEARNTGMM

k=1 k=2 k=3 k=4

features right eye left eye nose mouth

πk 0.192 0.306 0.222 0.280

Σk





0.007 0.001

0.001 0.009









0.013 −0.002

−0.002 0.012









0.035 0.003

0.003 0.032









0.011 −0.001

−0.001 0.033




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Fig. 8. Contours of GMMs with various numbers of Gaussian components, learnt in our experiments.

this figure that PCC is nearly convergent for both face and facial feature channels, once the the order of

polynomial fitting is greater than 3. In our experiments, thefourth order polynomial fitting were therefore

adopted. After the fourth order polynomial fitting, the values for fitting coefficientsa5, a4, a3, a2, a1

and a0 of (7) are 6345.8, −2931.2, 491.0, −36.4, and 1.1, and values forb5, b4, b3, b2, b1 and b0 of

(8) are−6474.3, 3146.4, −545.1, 38.6, and−0.1. Beyond, the ratio forwC : wI : wO is 8 : 3 : 30,

as the averaged optimal weights of color, intensity, and orientation channels are0.016, 0.006, and0.06.

Finally, the saliency maps of all test images can be worked out by (5), with the aforementioned GMMs

and optimal weights.

B. Testing Results

AUC. In order to quantify the accuracy of saliency detection, we tabulate in Table II the AUC results

of our and other 8 methods. In this table, the averaged AUC values with its standard deviations on all

150 test images are listed. As seen from this table, the methods with top-down features, i.e., Cerfet al.
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Fig. 9. Fitting on pairs of weight and face size. In (a) and (b), the blue dots stand for each pair of the optimal weight and its corresponding

face size for all 360 test images, and the red lines are the fourth order polynomial curves on fitting all the blue dots. In (c), the orders of

polynomial fitting curves versus Pearson’s correlation coefficient of fitting are plotted.
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Fig. 10. Average ROC curves for all 150 test face images, by our and other state-of-the-art methods.

[16], Juddea al. [19], Zhao ea al. [21] and ours, perform better than the bottom-up methods. This is

because face, as a high-level feature, is crucial for improving saliency detection accuracy. Furthermore,

our method outperforms all other state-of-the-art top-down and bottom-up methods in terms of AUC.

Especially, there is 0.02 AUC improvement over Zhaoet al. [21], in which the the top-down face channel

is integrated and its corresponding weight is learnt from training data. The possible reason for our method

outperforming Zhaoet al. [21] is that the GMM distribution of saliency of face region is learnt from

training data and then incorporated in our method, and that the weights of top-down channels are learnt

regarding face size. Moreover, we show in Figure 10 the ROC curves of saliency detection by our and

all other state-of-the-art methods. Clearly, our method issuperior to other methods.

NSS and CC. For a more comprehensive evaluation [28], we move to the comparison of NSS and

CC metrics for saliency detection on all test images. NSS is computed to imply the relevance between

fixation locations and saliency predictions, and CC measures the strength of a linear relationship between

human fixation map and predicting saliency map. The averagedNSS and CC results (with their standard

deviations) of saliency detection by our and other state-of-the-art methods are also tabulated in Table II.

Note that methods with a larger NSS value or a CC value close to+1/-1, can better predict the human

fixations. Therefore, it can be seen from this table that our method performs significantly better than other

state-of-the-art methods, in terms of both NSS and CC metrics, as there are at least 1.02 improvement

of NSS and 0.17 enhancement of CC in our method.

Saliency map. Figure 11 shows the saliency maps of 8 randomly selected testimages, detected by

eye tracking data, our, and other 8 methods. From this figure,we can see that compared to all other

methods, our method is able to well locate the saliency regions, much closer to the maps of human

fixations. To be more specific, for images with small face (i.e., the first and second rows), the saliency

maps by our method are much more similar to those of human fixations, as the learnt non-isotropic

Gaussian distribution of saliency in face region is adopted. For images with large face (i.e., from third

to eighth rows), our method yields the appropriate maps, which well reflect the saliency distribution of
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TABLE II

THE COMPARISON OF OUR AND OTHER METHODS FOR MEAN VALUES(STANDARD DEVIATION) OF AUC, NSS,AND CC

Metrics Our method Itti[8] Cerf[16] Judd[19] Zhao[21] Duan[11] Hou[12] Erdem[14] Zhang[13]

AUC 0.90(0.04) 0.78(0.10) 0.86(0.06) 0.86(0.06) 0.88(0.05) 0.85(0.06) 0.70(0.16) 0.84(0.06) 0.82(0.11)

NSS 3.38(0.78) 1.08(0.54) 1.68(0.47) 1.40(0.32) 2.36(0.73) 1.56(0.59) 0.71(0.74) 1.64(0.87) 1.38(0.73)

CC 0.80(0.08) 0.29(0.13) 0.46(0.09) 0.42(0.07) 0.63(0.10) 0.41(0.13) 0.19(0.20) 0.46(0.21) 0.37(0.18)

(a) Input (b) Human (c) Ours (d) Itti (e) Cerf (f) Judd (g) Zhao (h) Duan (i) Hou (j) Zhang (k) Erdem
Fig. 11. Saliency maps of several face images, produced by our and other state-of-the-art methods as well as by human fixations. Note

that these images (from top to bottom) are sorted in the ascending order of face sizes.

regions of face and facial features using the learnt GMM. Besides, our method is capable of accurately

predicting human attention on faces with different sizes, since the optimal wights for face and facial

feature channels in our method can be adjusted according to face size.

V. CONCLUSIONS

For face images, we have proposed in this paper a saliency detection method to integrate the top-

down channels of face and facial features, in which GMMs for top-down saliency distribution and the

corresponding weights for each top-down channel are learntfrom the training fixations. Combined with

the conventional bottom-up features (i.e., color, intensity, and orientation), our saliency detection method

is capable of accurately predicting human visual attentionon face images. It is because our method

benefits from the learnt GMM distribution of attention on face, rather than the simply assumed isotropic

Gaussian distribution of saliency over face regions in other state-of-the-art top-down methods.

To facilitate saliency analysis of face images, we first established an eye tracking database of 510 face
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images. Working on our database, GMMs were learnt for top-down channels of face and facial features

in saliency detection. Moreover, weights corresponding totop-down face and facial feature channels

were optimized by learning the relationship between the weights and face size, since the amount of

visual attention on face is relevant to the face size. Finally, we evaluated the effectiveness of our method

with three commonly used metrics, i.e., the AUC, CC, and NSS.As a result, our method significantly

advanced state-of-the-art saliency detection on face images, as our method drastically outperformed other

8 state-of-the-art methods, in terms of AUC, CC, and NSS.
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