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Abstract

HEVC, as the latest video coding standard, achieves top performance on image compres-
sion. On the basis of this, we propose a novel approach to optimize subjective quality for
HEVC-based image compression. Specifically, a bit allocation formulation is established to
optimize subjective quality with constraint on bit-rates. Then, we propose a recursive Tay-
lor expansion method to quickly solve such a formulation with an approximate closed-form
solution. The experimental results show the superior performance of our approach, with
∼40% BD-rate saving over the state-of-the-art HEVC-MSP for face image compression.

1 Introduction
Nowadays, multimedia applications, such as Facebook and Twitter, are becoming the
integral component for the daily life of millions, leading to the explosion of big data.
Among them, images account for an important part, thus posing great challenges to
the limited communication bandwidth. A set of image compression standards have
been proposed to condense the image data, e.g., JPEG 2000, JPEG XR, and WebP.
Benefitting from most recent success of high efficiency video coding (HEVC) [1],
HEVC main still picture (HEVC-MSP) profile [2] achieves performs the best among
all state-of-the-art standards on image compression [2]. However, those existing stan-
dards, including HEVC-MSP, mainly focus on removing statistical redundancy with
various techniques [3]. Further reducing the statistical redundancy may help to im-
prove coding efficiency, but at the cost of extremely heavy computational complexity.

Thanks to the human visual system (HVS), there exists perceptual redundancy in
images that can be further exploited [4]. Many ongoing approaches on mimicking the
HVS have cascaded some light on perceptual image compression. The features devel-
oped from the HVS can be mainly classified into two categories [3]: visual sensitivity
and visual attention. Correspondingly, the existing approaches are mainly related to:
I, bit reduction while maintaining a desired subjective quality (visual sensitivity); II,
quality improvement with the constraint on bit-rates (visual attention).

For I, one commonly used HVS feature is the just noticeable difference (JND).
Many approaches [5] [6] [7] [8] incorporate JND to save bits while the compressed
images maintain almost unchanged or desired subjective quality. For instance, Liu
et al. [8] adopted JND and a spatial and spectral quantization error to estimate
perceptual distortion. Then, by iterating to reach the desired distortion, minimum
bits can be achieved for JPEG 2000. However, JND-based approaches target at saving
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(a) Heat map (b) No emphasis (c) Well balanced (d) More emphasis

Figure 1: Different bit allocation emphasis on ROIs of Lena image. Note that (a) is the heat map of eye fixations;
(b), (c) and (d) are compressed by HEVC-MSP and the bit-rates remain the same at 0.1 bpp. The DMOS scores (to
be discussed in Section 4) for (b), (c), and (d) are 63.9, 57.5, and 70.3, respectively.

some bit-rates at a given subjective quality, and they can hardly satisfy the bit-rate
constraint. For II, catering for visual attention of the HVS, most approaches [9]
[10] [11] [12] are developed to arrange relatively more bits to the region-of-interest
(ROI) [3] for better subjective quality. For example, in the work of [12], perceptual
image compression is achieved by maintaining the DWT coefficients in ROIs, while
reducing some coefficients in non-ROIs.

However, the extremely low quality in non-ROIs may also affect the whole image
quality, as illustrated in Figure 1. Thus, how many bits should “move” from non-ROIs
to ROIs is crucial for improving subjective quality. One effective way is to optimize
subjective quality, which has been considered in several works [13] [14]. However,
it is intractable [15] to establish a closed-form relationship between bit-rates and
perceptual distortion metrics, leading to sub-optimal results during bit allocation.
Since the state-of-the-art HEVC-MSP includes many delicate components, it is even
more intractable to establish this relationship. To our best knowledge, there exists
few bit allocation work to optimize subjective quality with the constraint on bits,
especially for HEVC-MSP.

Therefore, we propose in this paper a novel bit allocation approach to optimize
subjective quality for HEVC-based image compression. As pointed out by the lat-
est work [16], the information content weight peak signal-to-noise ratio (IW-PSNR),
which simply combines pixel-wise saliency with mean squared error (MSE), is effec-
tive to maintain high correlation with subjective quality. We thus apply IW-PSNR in
this paper to model subjective quality. Then, we propose a bit allocation formulation
to optimize IW-PSNR at a given bit-rate. Unfortunately, it is intractable to obtain a
closed-form solution to this formulation. Then, the recursive Taylor expansion (RTE)
is proposed to acquire the approximate closed-form solution. Additionally, to deal
with the mismatch between target and actual bits, we develop an optimal bit re-
allocation process to accurately control bit-rate while maintaining optimization. As
verified in our analysis, little complexity is introduced in our approach.

2 Optimizing subjective quality
In this section, we mainly focus on optimizing subjective quality. To this end, Section
2.1 first transplants the R-λ rate control (RC) approach [17] into HEVC-MSP. Based
on this, Section 2.2 proposes an optimization formulation and Section 2.3 solves this
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formulation with an approximate closed-form solution. Section 2.4 develops an opti-
mal bit re-allocation method to solve the issue of mismatch between the target and
actual bits.

2.1 Rate control implementation on HEVC-MSP

The latest R-λ approach is proposed in [17] for RC in HEVC. Since we concentrate on
applying RC to image compression, the CTU level RC in one video frame is mainly
discussed here. Specifically, for HEVC, it has been verified that the Hyperbolic model
can better fit rate-distortion (R-D) relationship [17]. Based on this, an R-λ model
is utilized for bit allocation in the latest RC approach, where λ is the slope of R-D
relationship [18]. Assuming that di, ri and λi represent the distortion, bits and R-D
slope for the i-th CTU, the R-D relationship and R-λmodel are formulated as follows,

di = ciri
−ki, λi = −∂di

∂ri
= ciki · ri−ki−1, (1)

where ci and ki are the constants reflecting the content of the i-th CTU. In the R-λ
approach [17], ri is first allocated according to the predicted mean absolute difference
(MAD), and then its corresponding λi is obtained with (1). By adopting a fitting
relationship between λi and QPi, QPs of all CTUs within the frame can be yielded,
such that RC is achieved in HEVC. For more details, refer to [17].

However, ci and ki cannot be obtained when encoding the current CTU for HEVC-
MSP. Thus, it is hard to directly apply R-λ RC to HEVC-MSP. To predict the
image content, Karczewicz et al. [19] proposed to adopt sum of absolute transformed
difference (STAD) with constant ci and ki for R-λ RC of HEVC-MSP. Although SATD
can reflect the texture complexity, it is not as good as ci and ki on representing image
content. Therefore, this results in inaccurate R-D relationship and degradation on
coding efficiency.

To avoid above issues, we adopt the pre-processing process in calculating ci and
ki. After pre-compressing, the pre-encoded distortion, bits and λ can be obtained for
the i-th CTU, which are denoted as d̄i, r̄i and λ̄i. Then, the RC related parameters,
ci and ki, can be estimated with (1) before encoding the i-th CTU:

ci = d̄i/
(
r̄
−λ̄i·r̄i/d̄i
i

)
, ki =

λ̄i · r̄i
d̄i

. (2)

This way, with ci and ki, the RC of the R-λ approach [17] can be efficiently imple-
mented in HEVC-MSP.

Here, a fast pre-compressing process is developed in our approach, which set the
maximum coding unit (CU) depth to 0 for all pre-compressing CTUs. We have verified
that our developed pre-compressing process increases the computational complexity
by 10% burden, which is a bit more than 6% of the SATD-based method [19].

2.2 Optimization formulation on subjective quality

The main target of this paper is to optimize the subjective quality for HEVC-based
image compression. Here, the subjective quality is approximated by IW-PSNR [16],
as [16] has shown that IW-PSNR is highly correlated with subjective quality. In
general, IW-PSNR weights the distortion of each pixel by their corresponding saliency
values. Here, we denote di and wi as the sum of pixel-wise distortion (MSE) and
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saliency values within the i-th CTU. Then, on the basis of di and wi, the maximization
on IW-PSNR at a given target bit-rate R can be formulated by

min

(
ΣM

i=1widi
ΣM

i=1wi

)
s.t. ΣM

i=1ri = R. (3)

By using Lagrange multiplier λ and R-D cost J [18], (3) can be turned to minimize
J . Then, by setting its derivative to zero, the minimum J can be solved:

∂J

∂ri
=

∂
(
ΣM

i=1widi/Σ
M
i=1wi + λ(ΣM

i=1ri)
)

∂ri
=

wi

ΣM
i=1wi

· ∂di
∂ri

+ λ = 0. (4)

Combining R-D relationship in (1), (4) is turned to

ri = (
λ · ΣM

i=1wi

cikiwi

)
− 1

ki+1 = (
w̃iai
λ

)bi , (5)

where ai = ciki and bi =
1

ki+1
, reflecting the image content of each CTU. Moreover,

w̃i = wi/(Σ
M
i=1wi) represents the visual importance for each CTU. Note that with

our pre-compressing process, ci and ki can be obtained in advance. Thus, ai and bi
are able to be calculated before encoding the image. Then, the minimum J can be
achieved once λ is known in (5).

For calculating λ, we can use the constraint on bit-rates, formulated as
∑M

i=1 ri =
R. In other words, we need to find the “proper” λ by,

M∑
i=1

ri =
M∑
i=1

(
w̃iai
λ

)bi = R. (6)

After solving (6) to find the “proper” λ, the target bits satisfies the bit-rate constraint,
meanwhile enjoying minimal J and maximal IW-PSNR for the compressed image.

Unfortunately, since ai and bi vary across different CTUs, (6) cannot be solved by
a closed-form solution. Therefore, in the next section, the RTE method is proposed
to provide an approximate closed-form solution towards (6).

2.3 RTE method for solving optimization formulation

For solving (6), we assume that r̃i(λ̃)
bi = (w̃iai)

bi , where r̃i and λ̃ are the estimated
ri and λ, respectively. Then, (6) can be rewritten as,

M∑
i=1

ri =

M∑
i=1

(
w̃iai
λ

)bi =

M∑
i=1

r̃i(
λ̃

λ
)bi = R. (7)

From (7), we can see that once λ̃→ λ, there exists r̃i → ri. As such, the optimization
formulation of (6) can be solved for the bit allocation towards optimal subjective

quality. However, we do not know λ̃ at the beginning. Meanwhile, λ of (7) is unknown,
as it is intractable to find the closed-form solution to (6). In other words, there exists

a chicken-and-egg dilemma between λ̃ and λ. To solve such a dilemma, a possible λ̃ is
initially set1. Then, the RTE method is proposed to iteratively update λ̃ for λ̃→ λ.

Specifically, we preliminarily apply Taylor Expansion on ( λ̃
λ
)bi of (7), and then

discard the biquadratic and higher-order terms. The process can be formulated as

1
The picture λ [17] is set as the initial value of ˜λ in our RTE method.
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R =
M∑
i=1

r̃i(
λ̃

λ
)bi ≈

M∑
i=1

r̃i

⎛
⎝1 +

ln(
˜λ
λ
)

1!
bi +

(ln
˜λ
λ
)2

2!
b2i +

(ln
˜λ
λ
)3

3!
b3i

⎞
⎠ (8)

= −
M∑
i=1

r̃i(
b3i
6
)

︸ ︷︷ ︸
A

ln3λ+
M∑
i=1

r̃i(
b2i
2

+
b3i
2
lnλ̃)

︸ ︷︷ ︸
B

ln2λ−
M∑
i=1

r̃i(b
2
i lnλ̃+ bi +

b3i
2
ln2λ̃)

︸ ︷︷ ︸
C

lnλ+
M∑
i=1

r̃i(1 + bilnλ̃+
b2i
2

ln2 λ̃+
b3i
6

ln3 λ̃)

︸ ︷︷ ︸
D

.

Then, (7) can be approximated to be the cubic equation with variable lnλ in
(8). Applying Shengjin formula [20], this cubic equation is worked out to obtain the

approximated solution λ (denoted by λ̂) as:

λ̂ = e
−B−( 3

√
Y1+

3
√

Y2)

3A , Y1,2 = BE + 3A(
−F ±√F 2 − 4EG

2
), (9)

where E = B2 − 3AC, F = BC − 9A(D−R), and G = C2 − 3B(D−R). Note that
as Δ = F 2 − 4EG > 0 in practical encoding, there exists only one real root [20] for

(9). Thus, λ̂ value is unique. However, due to the truncation of higher-order terms in

Taylor expansion, λ̂ estimated by (9) is not the accurate solution to (7). Fortunately,

as proved in Lemma 12, λ̂ is more accurate for estimating λ than λ̃ when λ̃ < λ.

Lemma 1 Consider λ > λ̃ > 0, bi > 0, and R > 0, for (7). When the solution of λ

to (7) is λ̂, the following inequality holds for λ̂,

|λ̂− λ| < |λ̃− λ|. (10)

Proof See our website3.

As seen from Lemma 1, although both λ̃ and λ̂may be inaccurate, λ̂, obtained through
(7) - (9), is more close to λ than λ̃. This important characteristic contributes a lot

to our estimation on λ̃ when λ of (7) is unknown. In fact, we can iterate the Taylor

expansion via utilizing λ̂ as the estimation of λ̃ to the next iteration, which is the
core of RTE method. In addition, if λ̃ > λ > 0 at the first iteration, its output λ̂ is
smaller than λ, as pointed out by Lemma 2. For the subsequent iterations of the RTE
method, 0 < λ̃ < λ can be achieved, since the value of λ̃ has been replaced by that of
λ̂. This way, the approximate closed-form solution λ can be obtained, by iteratively
estimating λ̃.

Lemma 2 Consider λ̃ > 0, λ > 0, bi > 0, λ �= λ̃, and R > 0 for (7). If λ̂ is the
solution of λ to (7), then the following holds

λ̂ < λ. (11)

proof See our website.

Our RTE method is summarized in Table 1. For each iteration, the convergence
criterion is set as the extremely low approximation error, Ea < 10−10, where Ea =
|ΣM

i=1r̃i−R|/R. As analyzed in Section 3, generally with no more than three iterations,

the RTEmethod is able to reduce the difference between λ̃ and λ to an extremely small
value, meeting the convergence criterion. Thus, λ̃ can be output as the approximate
closed-form solution to (7) (as well as (6)). Finally, we replace λ by λ̃ in (5) to allocate
the target bits to each CTU, such that IW-PSNR can be maximized.

2
It is obvious that 0 < bi = 1

ki+1
< 1 and R > 0 in HEVC encoding.

3
Our website is http://www.ee.buaa.edu.cn/xumfiles/dcc2016.htm
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Table 1: The RTE method for solving (7)

– Input: Image content information (ai, bi, wi) for each encoding CTUs and target bits R for the image.
– Output: reasonable bit allocation r̃i for each CTU on optimizing subjective quality.
• Initialize pre-estimated λ̃ to be the picture λ.
• While λ̃ does not meet the convergence criterion

1 Calculate A, B, C, and D of (8) with λ̃.

2 Obtain λ̂ estimated by (9).

3 Update λ̃ with the obtained λ̂.
End

• Save the final λ̃.
• Apply it to bit allocation r̃i with (5).
• Return r̃i for each CTU.

2.4 Bit re-allocation for maintaining optimization

As we have discussed in Section 2.3, bits are reasonably allocated in our method to
optimize subjective quality. However, in practical encoding, there may exist slight
difference between target and actual bits for each CTU. This difference may degrade
the control accuracy as well as optimization on subjective quality. To address such
an issue, we develop a bit re-allocation process to accurately control bits, meanwhile
maintaining the optimization on subjective quality.

Specifically, for compensating the bit error after encoding the i-th CTU, the target
bits for the incoming K CTUs (denoted as Ti+1,i+K) are updated by

Ti+1,i+K =

j=i+K∑
j=i+1

r̃j +

(
T̂ −

j=M∑
j=i+1

r̃j

)
︸ ︷︷ ︸

bit error

. (12)

In (12), T̂ is the left bits for encoding remaining CTUs. Recall that M means the
total number of CTUs, and r̃j represents the target bits for the j-th CTU by our RTE
method. Obviously, as seen from (12), the mismatch between target and actual bits
is compensated during encoding the next K CTUs. Here, the RTE method of Section
2.3 is applied to re-allocate Ti+1,i+K to the next K CTUs. Note that we follow [17] to
set K = 4, which means that bits are re-assigned in the next four CTUs. Moreover,
it needs to be pointed out that due to the fast convergence speed of our RTE method,
the complexity increases little for the bit re-allocation process.

Finally, we summarize our approach in Figure 2. Specifically, we first transplant
R-λ RC into HEVC-MSP with a simplified pre-compressing process, and the saliency
values are detected for the encoding image. Based on this, the RTE method is used
to design bits to each CTU, such that subjective quality can be optimized at a given
bit-rate. Next, the QP value of each CTU can be estimated upon the R-λ model
and QP fitting. Note that the bits need to be re-allocated in the following CTUs, to
bridge the gap between target and actual bits.

3 Computational complexity analysis
This section discusses the computational complexity of our approach. Figure 3 shows
Ea versus RTE iterations when applying our approach to image compression in HM
16.0 platform. From this figure we can see that with at most three iterations, Ea

reaches below to 10−10, implying the fast convergence speed of our RTE method.
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Figure 2: The procedure of our approach on optimizing subjective quality.

(a) Lena 512×512 @ 512bpp (b) All images of our test set

Figure 3: Ea versus iteration times of the RTE method. Note that for (a), the black dots represent Δλ for each
CTU in Lena image. For (b), all 10 images (from our test set of Section 4) were used to calculate the approximation
error and the corresponding standard deviation along with the increased iterations.

We further exploit the computational time for each iteration of the RTE method.
As seen from Table 1, the computational time for each iteration is independent of
image content. Thus, one image was randomly chosen and compressed by our ap-
proach. The averaged time of one iteration of our RTE method was then recorded.
The computer used for the test is with Intel Core i7-4770 CPU at 3.4 GHz and 16
GB RAM. Through the test, one iteration of our RTE method only consumes around
0.0015 ms for each CTU. Since it takes at most three iterations to acquire the ap-
proximate closed-form, the computational time for each solution is less than 0.005 ms
in our approach.

Our approach consists of two parts: bit allocation and re-allocation with the RTE
method. For bit allocation, three iterations are enough for encoding one image, thus
consuming at most 0.005 ms. For bit re-allocation, the computational time depends
on CTU number of the image, and each CTU requires at most three iterations to
obtain the re-allocated bits. For a 1080p image, the computational time is around 2.5
ms as it includes 510 CTUs. This implies the negligible computational complexity
burden of our approach.

4 Experimental results
Experimental results are reported in this section to evaluate the performance of our
approach. As face images take a large part of images in daily life and human face is
consistently agreed to draw much attention, the face images are used in our experi-
ment to evaluate the performance of our approach. Here, we follow our most recent
work [21] to detect saliency and obtain wi for our optimization formulation (3).

4.1 Test set and parameter settings

We set up a test set which includes 10 face images at different resolutions and scenarios
(available at our website). For this test set, two standard test images (Lena and
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(a) Tourist (1920×1080) (b) Golf (1920×1080) (c) Travel (1920×1080) (d) Doctor (1920×1080) (e) Woman(1280×1600)

(f) Kodim15 (768×512) (g) Kodim04 (512×768) (h) Kodim18 (512×768) (i) Tiffany (512×512) (j) Lena (512×512)

Figure 4: EW-PSNR and PSNR versus bit-rates for our approach and conventional non-RC HEVC-MSP.

Tiffany) were selected and all face images from JPEG XR and Kodak were chosen
(Woman, Kodim04, Kodim15, and Kodim18 ). Besides, four images (Tourist, Golf,
Travel, and Doctor) were chosen from our eye-tracking database [21]. For more details
of these images, refer to Figure 4.

The non-RC HEVC-MSP [2], with the default MSP configuration profile on HM
16.0 platform, was utilized for comparison. The RC HEVC-MSP, mainly based on
[19], was also compared. Note that our approach and the RC HEVC-MSP have added
RC to specify the bit-rates, and the other parameters in the configuration profile were
set by default, the same as those of the non-RC HEVC-MSP. To obtain the target
bit-rates, we encoded each image with the non-RC HEVC-MSP at fixed QPs, of which
values are 47, 42, 37, 32, 27, and 22. As such, high ranges of compressed image quality
can be ensured. Then, the target bit-rates of our approach and the RC HEVC-MSP
were set to be the actual bits obtained by the non-RC HEVC-MSP at above QP
values.

4.2 Evaluation
Now, we assess on visual quality of our approach, the non-RC and RC HEVC-MSP.
Since eye fixations acquired by the eye-tracking experiment4 can well reflect visual
attention, it is more reasonable to use saliency generated by eye fixations, instead
of saliency by our method [22], for visual quality assessment (VQA). Accordingly,
we compare our approach with the non-RC and RC HEVC-MSP in the terms of
eye-tracking weight PSNR (EWPSNR) [22], whose effectiveness is verified in VQA.

Then, Figures 4 and 5 plot the EWPSNR and PSNR versus bit-rates for each
image. From this figure we can see that although there is slight degradation on
PSNR, our approach is able to significantly improve EWPSNR, due to the proper
emphasis on ROIs. Specifically, our approach enjoys averaged 2.46 dB improvement
over the non-RC HEVC-MSP and even more improvement over the RC HEVC-MSP.
Moreover, the Bjontegaard distortion-rate (BD-rate) saving for EW-PSNR in our
approach is 38.54% over the non-RC HEVC-MSP, and 42.48% over the RC HEVC-
MSP. This verifies that our approach can significantly improve subjective quality in
terms of EW-PSNR, compared with the non-RC and RC HEVC-MSP.

4
We have conducted the eye-tracking experiment on images in our test set, with test condition the same as [21]. The results of our

eye-tracking experiment can also be available at our website, http://www.ee.buaa.edu.cn/xumfiles/dcc2016.htm
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(a) Tourist (1920×1080) (b) Golf (1920×1080) (c) Travel (1920×1080) (d) Doctor (1920×1080) (e) Woman(1280×1600)

(f) Kodim15 (768×512) (g) Kodim04 (512×768) (h) Kodim18 (512×768) (i) Tiffany (512×512) (j) Lena (512×512)

Figure 5: EW-PSNR and PSNR versus bit-rates for our approach and conventional RC HEVC-MSP.

Table 2: DMOS results for our approach and conventional non-RC HEVC-MSP.
Tourist Golf Travel Doctor Woman Kodim15 Kodim04 Kodim18 Tiffany Lena

QP=47
Bits (bpp) 0.04 0.02 0.04 0.02 0.04 0.03 0.03 0.05 0.03 0.05

Our 57.2 58.0 56.9 56.5 61.4 64.5 68.9 55.0 59.2 57.5
Non-RC 74.3 69.6 69.1 63.9 78.4 70.1 73.9 66.3 67.6 63.9

QP=42
Bits (bpp) 0.08 0.03 0.10 0.03 0.13 0.06 0.06 0.16 0.06 0.09

Our 45.0 50.0 42.7 47.8 43.9 50.7 53.6 43.1 43.1 47.9
Non-RC 58.5 56.3 53.7 52.1 61.3 61.2 61.9 56.9 54.1 55.5

QP=32
Bits (bpp) 0.27 0.08 0.36 0.10 0.56 0.29 0.31 0.76 0.26 0.28

Our 28.1 35.2 26.1 34.1 28.9 30.0 30.0 20.8 27.1 36.9
Non-RC 36.4 42.0 34.0 42.3 36.0 38.7 38.8 28.5 30.2 44.0

Furthermore, we compare our approach with the non-RC HEVC-MSP using dif-
ference mean opinion scores (DMOS). Note that the RC HEVC-MSP is not evaluated
in our test, as it has the similar visual quality to non-RC HEVC-MSP. The results
are tabulated in Table 2. Note that the smaller values of DMOS indicate the better
subjective quality. Thus, we can see that our approach has much better subjective
quality than the non-RC HEVC-MSP at all bit-rates. Moreover, for all images, the
DMOS values of our approach at QP = 47 are almost equal to those of the non-
RC HEVC-MSP at QP = 42. This means that nearly half reduction of bit-rates is
achieved in our approach. This is also in accordance with ∼40% BD rate saving of
our approach discussed above. We further show in Figure 6 Lena image of our results.
Obviously, there exists evident visual quality improvement of our approach over the
conventional non-RC and RC HEVC-MSP. We have offered all compressed images in
our website.

5 Conclusion
In this paper, we have proposed a novel HEVC-based image compression approach,
which optimizes the subjective quality in the latest HEVC-MSP platform. Benefit-
ting from the state-of-the-art saliency detection, we develop a formulation to optimize
subjective quality, which maintains properly high quality at attention-attracting re-

(a) Non-RC HEVC-MSP (b) RC HEVC-MSP (c) Our

Figure 6: Subjective quality of Lena image at 0.05 bpp (QP = 47) for three approaches.
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gions. Then, the RTE method is proposed to solve such a formulation, followed by
bit allocation and re-allocation process. As a result, the subjective quality can be sig-
nificantly improved over the state-of-the-art HEVC-MSP for image compression. Our
experimental results verify such a significant improvement on face image compression.
Our approach, of course, is not limited to face image compression, as other saliency
detection methods for generic images can be easily embedded into our approach.
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