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Learning-based Saliency Detection of Face Images
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Abstract—In this paper, we propose a novel method to detect
saliency on face images. In our method, face and facial features
are extracted as two top-down feature channels, linearly integrat-
ed with three traditional bottom-up features of color, intensity,
and orientation, to yield final saliency map of a face image. By
conducting an eye tracking experiment, a database with human
fixations on 510 face images are obtained for analyzing the
fixation distribution on face region. We find that fixations on face
regions can be well modeled by Gaussian mixture model (GMM),
corresponding to face and facial features. Accordingly, wemodel
face saliency by Gaussian mixture model (GMM), learnt from
the training data of our database. In addition, we investigate
that the weights of face feature channels rely on the face size
in images, and the relationship between the weights and face
size is therefore estimated by learning from the training data of
our eye tracking database. The experimental results validate that
our learning-based method is capable of dramatically improving
the accuracy of saliency detection on face images over other10
state-of-the-art methods. Finally, we apply our saliency detection
method to compress face images, with an improvement on visual
quality or saving on bit-rate over the existing image encoder.

Index Terms—Saliency detection, GMM, face image.

I. I NTRODUCTION

A. Background

T HE study on the human visual system (HVS) [2] reveals
that the distribution of human visual attention on a scene

is uneven. In other words, most attention is drawn by a small
region (namely salient region), whereas little attention focuses
on other region (non-salient region). As a result, human is
able to survive in everyday tremendous visual data. Predicting
the distribution of visual attention on images or videos is an
important way to explore how human perceive the world, and
saliency detection is such a way to make computers predict the
distribution of visual attention. In fact, saliency detection has
been extensively applied in many computer vision and image
processing areas, like object detection [3], object segmentation
[4], visual quality assessment [5], image retrieval [6] and
image/video coding [7].

B. Related work

The existing methods for saliency detection can be divided
into two classes: either bottom-up or top-down methods. The
pioneering bottom-up method on saliency detection is Itti’s
model [8]. In [8], Itti et al. proposed to establish center-
surround responses in feature channels of color, intensityand
orientation, for yielding the conspicuity maps. Then, the final
saliency map is achieved by linearly integrating conspicuity
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maps of all three feature channels. The fast decade has
witnessed extensive advanced work on bottom-up saliency
detection, e.g., [9]–[29]. For example, benefitting from 0graph
theory, graph-based visual saliency (GBVS) method [12] was
proposed to detect the saliency of an image, by forming
and then normalizing activation maps, which are also based
on the bottom-up features of color, intensity and orientation.
Later, the wavelet transform was applied in [13] as a kind
of bottom-up features for saliency detection. Taking advan-
tage of the development in signal processing field, some
latest signal processing algorithms have been incorporated
in saliency detection, e.g., spectral analysis based [15]–[18],
sparse representation based [20], [21], and region covariances
based [22] methods. Recently, other advanced methods, e.g.,
online salient dictionary learning (OSDL) [27] and boolean
map based saliency (BMS) [28], have also been proposed
to predict image saliency. Most recently, some convolutional
neural networks (CNN) approaches, such as [23], [24] have
been proposed, benefitting from the development of deep
learning. In compressed domain, [25] and [29] have been
proposed to detect saliency via utilizing bottom-up features
of H.264 and H.265 bitstreams, respectively.

In fact, top-down visual features is significant in deter-
mining the saliency of images/videos. Thus, the top-down
methods of saliency detection have been studied broadly in
[30]–[36]. For face images, Cerfet al. [32] found that face
is a significant top-down cue to draw attention, as their eye
tracking experiments shows that faces were fixated on in
88.9% within first two fixations (150 face images viewed
by 7 subjects). Therefore, they combined Viola & Jones
(VJ) face detector [37] with Itti’s model [8], to improve the
performance of saliency detection for face images. Since itis
more reasonable to learn how important face is on drawing
visual attention, some latest methods [38]–[42] have been
proposed to employ machine learning algorithms to advance
top-down saliency detection of Cerf’s work [32]. For instance,
Juddet al. [38] utilized a classifier to learn several low, middle
and high level image features (e.g. intensity, gist features and
faces) to combine top-down and bottom-up saliency detection
in a single unified formulation. Besides, Zhao [40] quantified
the weight of the face channel on drawing attention by utilizing
fixations on face images. Lately, Jianget al. [41] extended
Cerf’s work [32] to detect saliency in a scene composed of
multiple faces, i.e., saliency detection in a crowd. Specifically,
for detecting saliency in a crowd, Jiang employed multiple
kernel learning (MKL) to learn a more robust discrimination
between salient and non-salient regions in multi-face scenes.
In [42], Renet al. proposed to predict visual attention drawn
by different parts of a single face, the sizes of which are fixed
in the images, i.e., small, medium and large.
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(a) Fixation Heatmap (b) Fixations (c) Isotropic GM [40] (d) Learnt GMM

Fig. 1. Learnt GMM vs Isotropic GM for modeling saliency in face region. Both fixations and saliency maps on the face regions are displayed.

C. Our work and main contributions

Although faces have considered for saliency detection in the
traditional approaches, these approaches do not explore fixa-
tion distribution within faces. As can be seen in Figure 1, the
assumption of a simple isotropic Gaussian model (GM) [32],
[40] for saliency distribution in face cannot well model visual
attention drawn by faces. We can see from this figure that, for
images including small faces, the non-isotropic GM is with
high accurate in modeling saliency distribution on face. For
images including large faces, a single GM is not sufficient, as
fixations tend to cluster around the facial features (e.g., eyes).
Hence, saliency distribution, in the form of Gaussian mixture
model (GMM), needs to be learnt from eye fixations on face
images. Figure 1-(d) illustrates that saliency with the learnt
GMM distribution is more consistent with the ground truth
attention. To be more specific, one non-isotropic Gaussian
component needs to be modeled for images with small faces,
while more than one component can be modeled for images
with large-face. Despite GMM already being incorporated in
face saliency detection, it merely concentrates on the GMM of
fix-sized faces, such that it cannot be used to detect saliency
of images with face at various sizes. Thus, we propose in
this paper a learning-based method for saliency detection,and
it learns various GMMs and the corresponding weights across
different face sizes1, to predict visual attention on free-viewing
face images.

This paper is an extended version of our conference paper
[1]. Beyond [1], this paper investigates the improvement of
our method for saliency detection of faces at various sizes.The
generalization of our method is validated by implementing our
method on our database and two other public databases, rather
than only testing on our database in [1]. Moreover, this paper
provides a potential application of our method in JPEG-based
face image compression. The main contributions of this paper
are listed as follows:

• We establish a large-scale eye tracking database for
visual attention analysis on face images. The ground truth
fixations and images of our database are available online2.

1In this paper, the face size means the proportion of pixel number of the
face region to that of the whole image.

2The database is available on our website:https : //github.com/Ren
Y un2016/face.

• We model human visual attention attended to face regions
using learnt GMM distribution, the weights of which are
also learnt with respect to face sizes.

• We apply our saliency detection method to the task of
face image compression, which enables bit-rate saving or
quality improvement over existing image encoders.

D. Organization of this paper

The rest of this paper is organized as follows. In Section II,
we introduce our eye tracking database with a detailed anal-
ysis. Then, Section III proposes a novel method for saliency
detection on face images. Section IV shows the experimental
results to validate our proposed method. Afterwards, Section
V discusses an application of our saliency detection method.
Finally, Section VI concludes this paper.

II. DATABASE AND ANALYSIS

Upon face images, face is an obvious top-down feature
for drawing visual attention. Furthermore, intuitively facial
features (i.e. eyes, nose, and mouth) may attract more human
fixations than other regions in face. To verify this insight,
we conducted a database of face images and analyzed the
fixation distribution in our database. This section introduces
our database and analysis. Specifically, Section II-A discusses
the details in database conduction, and Section II-B lists the
analysis results on fixations in our database.

A. Database

For the analysis of visual attention on face images, we
conducted an eye tracking experiment to establish a database
containing extensive fixations on various face images. To
be more specific, we follow the below steps to set up our
database:

Firstly, we randomly selected 510 face images from Google.
There are two criteria when selecting images: (1) The original
resolution of images is1920 × 1080. (2) All images contain
only one frontal face (turning degree of head< 45◦. As a
result, we found that the face sizes in all images vary from
0.0016 to 0.3018. Figure 2 illustrates all face sizes of 510
images. In this figure, we can see that face sizes are distributed
in log function.
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Fig. 2. Face sizes of all 500 images in our database.

Fig. 3. Eye fixations and pixel numbers belonging to face regions and
background regions.

Secondly, 14 male and 10 female, aging from 19 to 35, were
employed as volunteers to observe 510 face images in our eye
tracking experiment. Note that among 24 subjects there were
two subjects having research experience of saliency detection,
and other 22 subjects without any background in saliency
detection were native to the purpose of the eye tracking
experiment.

Thirdly, we conducted our eye tracking experiment by
utilizing a Tobii TX300 eye tracker to record the fixations of
24 subjects. Tobii TX300 was applied at a sample rate of 300
Hz, with the same resolution (1920×1080) as face images. The
distance between subjects and the monitor of the eye trackeris
around60 cm. Thus, the visual angle of the stimuli was about
26.8◦ × 46.0◦. Besides, all subjects were required to have 9-
point calibrations for the eye tracker before the experiment.
During the experiment, all subjects look at images with free-
view mode. Note that all images are displayed randomly, and
a 2-second displaying of black image was inserted to correct
a drift.

After the experiment, we collected 151,511 fixations for
all 510 images, averagely about 300 fixations for each
image. Note that we provide all 510 face images, eye
tracking data, and corresponding Matlab code onhttps :
//github.com/RenY un2016/face for further saliency de-
tection research.

B. Database analysis

Based on the above eye tracking database, we analyze the
distribution of visual attention on face and facial features.
All 510 face images containing 151,511 fixations in the
database are included in the statistical analysis. It should be
noted his paper applies a real-time face alignment method
[43] to extract face and facial features from face images,
obeying the point distribution model (PDM) with 66 landmark

Fig. 4. Proportions for fixations in face. The blue points areproportions for
fixations in face of all 510 images. Besides, the red line stands for the linear
fitting curve of all blue points. The green line is the probability that points
randomly fall into the face region, which is similar to the proportion of face
region to the whole image.

points. Through the statistical analysis, we have obtainedthe
following observations:

Observation 1: Face attracts significantly more visual atten-
tion than background.

Here, we count fixations of all 510 face images falling into
face and background, and list the results in Figure 3. Besides,
we also count the pixels belonging to face and background.
From Figure 3, we can see that although faces averagely take
up only 5.7% of whole images, they draw62.3% of eye
fixations. The results imply that face is more important than
background on attracting visual attention. This completesthe
analysis of Observation 1.

Observation 2: Face attracts more visual attention when face
size enlarged.

It is an insight that visual attention on face increases when
face size is enlarged. To validate such a insight, we plot in
Figure 4 the proportions of fixations on faces versus face sizes,
for all 510 images in our database. As shown in Figure 4,
the proportions of fixations on faces grow when face size is
increased. Besides, all points for proportion of fixations on
face are above the curve of random hit. The random hit curve
is defined as the probability that a fixation falls into the region
of face at random. This again shows that face is with rather
large saliency in an image. Besides, one may see from Figure
4 that the increment of fixation fitting curve is much faster
than that of the random hit, alongside the enlarged face size.
Therefore, we can conclude that much more attention is paid
to face once the face is viewed at a large size. This completes
the analysis of Observation 2.

Observation 3: Visual attention on eyes and mouth increases
along with the enlarged size of face in videos, whereas the
attention on nose is invariant to the face size.

Compared with other region in face, facial features have
more complex textures. Thus, it is intuitive that visual attention
on facial features, i.e., left eye, right eye, nose, and mouth,
may be much more than that on other region in face, when
the image is displayed with a close up view of face. Then, we
investigate the visual attention on facial features by statistical
analysis on distribution of the eye fixations within face regions
in our database. Figure 5 shows the proportions of fixations
on each facial feature versus face sizes, over all 510 images.
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(a) Right eye (b) Left eye (c) Nose (d) Mouth

Fig. 5. Proportions for fixations in facial features. The blue points are proportions for fixations in facial features of all 510 images. Besides, the red line
stands for the linear fitting curve of all blue points. The green line is the probability that points randomly falling intothe facial feature region, same as the
proportion of each facial feature region to the whole image.

We can find out from this figure that more attention is drawn
in all facial features than the random hit. Besides, it can be
also observed that the fixation fitting curves for facial features,
especially eyes, increase more sharply than the random hit,
when face approaches to large size. However, proportion of
fixations on nose region is not grown. It is probably due to
the fact that the visual attention shifts from face center (i.e.,
nose) to other facial features, such as eyes. This completesthe
analysis of Observation 3.

Based on the three observations, both face and facial fea-
tures should be taken into consideration in saliency detection,
and the weights corresponding to these two channels needs to
be correlated with face sizes. Next, we propose our saliency
detection method, which mainly focuses on modeling fixation
distribution over face and facial features.

III. T HE PROPOSED METHOD

This section presents the proposed method for modeling
saliency on face and facial features. In Section III-A, we
propose to learn GMM from the training fixations. Next, we
present in Section III-B the saliency detection method, which
is based on our learnt GMMs. Finally, we propose in Section
III-C the algorithm for obtaining optimal weights.

A. Learning GMM

According to our observations, the facial features draw a
large amount of visual attention, when the face is of large
size. Therefore, we can use the GMM to model the facial
feature channel, which has large-valued saliency within facial
features. First of all, we follow [1] to calibrate and normalize
positions of fixations across different face images within a
uniformed coordinate system. Assuming thatx = (x′, y′) is
the calibrated and normalized coordinate of point(x, y) within
a face, the GMM can be written as a linear superposition of
Gaussian components in the form:

K
∑

k=1

πkNk(µk,Σk), (1)

and

Nk(x) = exp {−
1

2
(x− µk)

TΣ−1
k

(x− µk)}, (2)

where πk, µk, Σk are the mixing proportion, mean, and
variance of thek-th Gaussian component. In (1),K is the
total number of Gaussian components.

In fact, the GMM can be learnt from fixations of eye
tracking data. Here, the EM algorithm [44] is applied to learn
the GMM on the calibrated and normalized fixations falling
into face regions. For the face channel, the similar way is
utilized to learn GMM distribution of face, where only one
Gaussian component, corresponding to face, is considered.For
the learnt results of GMMs on both face and facial feature
channels, refer to Section IV.

B. Saliency detection

Given the learnt GMM, the top-down conspicuity maps on
face channel (F) and facial feature channel (G), denoted by
C(F) and C(G), can be worked out on the basis of (1) and
(2). However, for saliency detection the mean valuesµk in (1)
and (2) are replaced by the central points of facial features,
when the number of Gaussian components is 4. This is because
there may exist the deviation between the statistical centroids
of Gaussian components and the detected central points of
facial features (i.e., eyes, nose, and mouth). Note that theface
detection method is mentioned in Section 2.2.

Next, similar to [32], the top-down conspicuity maps are
integrated with the bottom-up conspicuity maps of color (C),
intensity (I), and orientation (O). As a result, the final saliency
mapM can be generated by

M = wCC(C) + wIC(I) + wOC(O) + wF C(F) + wGC(G),
(3)

whereC(·) is the normalized conspicuity map on each feature
channel. C(C), C(I), and C(O) can be obtained by the
method in [11], whereasC(F) andC(G) need to be yielded
upon the learnt GMM as aforementioned. In addition,w =
[wC , wI , wO, wF , wG]

T are weights corresponding to feature
channels. They can be computed by least square fitting. For
more details on computing these weights, refer to the next
subsection. Figure 6 shows an example of overall procedure
on our learning-based saliency detection method.

C. Learning optimal weights

Now, the remaining task for saliency detection with (3) is
to determine weightsw = [wC , wI , wO, wF ,wG]

T for each
conspicuity map. In this subsection, we focus on the compu-
tation on learning optimal weightsw from the training data of
our eye tracking database. Letmh be the vectorized human
fixation map of a training image. Givenmh, we follow the
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TABLE I
THE PARAMETERS OF THE LEARNTGMM

k=1 k=2 k=3 k=4
features right eye left eye nose mouth
πk 0.192 0.306 0.222 0.280

Σk

(

0.007 0.001

0.001 0.009

) (

0.013 −0.002

−0.002 0.012

) (

0.035 0.003

0.003 0.032

) (

0.011 −0.001

−0.001 0.033

)

Fig. 6. Framework of our learning-based saliency detectionmethod.

way of [40] to obtain weightsw for each training image, by
solving the followingℓ2-norm optimization formulation:

argmin
w

‖Vw−mh‖2, s.t. ||w||1 = 1,w ≥ 0, (4)

whereV is a matrix with each column denoting the vectorized
conspicuity maps ofC, I, O F, andG. Note that for each
single image, (4) is solved to obtain an optimal weightw

corresponding to this image. To solve (4), the disciplined
convex programming approach [45] is utilized in our method.
Then, the optimal weights can be obtained for each single
training image. Note that the weight optimization in our
method is different from that of [40] which works on the
weights by fitting all training images.

Next, given the learnt weights for each individual image, we
concentrates on working out the optimal weights of saliency
detection, in light of different weightsw of various training
images. Specifically, we find that the optimal weights are
dependent on face sizes. This is also consistent with the obser-
vation of Section II-B, in which both face and facial features
tend to attract much more attention when face is with large
size. Thereby, it is worth figuring out the relationships between
wF and face size, and betweenwG and face size. Here,
the polynomial fitting is applied to model such relationship.
Consequently, assuming thats is the face size,wF andwG

can be expressed as follows,

wF (s) =

I
∑

i=0

ais
i, (5)

and

wG(s) =

I
∑

i=0

bis
i, (6)

where {ai}Ii=1 and {bi}Ii=1 are the parameters of quadratic
functions to fit forwF andwG, respectively. As analyzed in
Section IV,I = 4 is capable of producing the precise fitting on
the pairs of weight and face size. Therefore, the fourth order
polynomial fitting is applied in this paper, and the values for
{ai}4i=1 and{bi}4i=1 are to be discussed in Section IV.

After achievingwF and wG, other weightswC , wI , and
wO are averaged over all training images to acquire the ratios
between them. Then, oncewF andwG have been calculated by
(5) and (6),wC , wI , andwO can be determined according to
the averaged ratios, with the constraint on||w||1 = 1. Values
for the learnt parameters and ratios to yield weightsw are
to be reported in Section IV. Finally, the saliency map of a
face image can be worked out via (3) with the learnt optimal
weights.

IV. EXPERIMENTAL RESULTS

This section discusses experimental results for both training
and test in our method. Specifically, Section IV-A shows the
learnt results on the learnt GMMs and weights in training set.
Sections IV-B and IV-C provide testing results of our method
and other 10 state-of-the-art methods evaluated on our and
other databases. In our experiments, the saliency evaluation
metrics of the area under ROC curve (AUC), normalized
scanpath saliency (NSS) [46], and linear correlation coeffi-
cient (CC) [47] are utilized on all test images. Besides, the
saliency maps of several test images are also provided for the
comparison. Finally, Section IV-D analyzes the improvement
of our method for images with different face sizes.

A. Training results

In the experiment, all 510 face images in our database are
divided into two groups: training and test sets, without any
overlap between the two groups. To be more specific, the
training set contains 360 images with 106,067 fixations and
the other 150 images with 45,444 fixations are included in test
set.

Learnt GMMs . Based on the training set of 360 images,
we obtain the learnt GMMs for top-down feature channels of
saliency detection by utilizing the method in Section III-A. For
the face channel, we learn the GMM with only one Gaussian
component. Note that the mean of the Gaussian component is
simply assumed to be the position of nose tip point in each
image (detected by the face alignment method [43]), as it can
be seen as the center of face. Then, the covariance matrix for
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the Gaussian component was learnt from training data, and its
learnt values are

Σ1 =

(

0.024 0
0 0.039

)

.

As can be seen above, there exists the anisotropy in learnt
GMMs, rather than the assumption on isotropy of Gaussian
distribution in [32].

For the facial feature channel, the number of Gaussian
components has to be confirmed first. To determine the number
of Gaussian components, we plot in Figure 7 the distributions
of the learnt GMMs, with different numbers of Gaussian
components. From this figure, we can see that the contours
for GMMs with more than three components are similar.
Accordingly, four-component GMM is utilized in our saliency
detection method. This is also consistent with our analysis
in Section II-B that visual attention tends to cluster around
four facial features (i.e., left and right eyes, nose, and mouth).
Hence, we assume that means of Gaussian components are the
positions of the centers of facial features. The parametersof
the learnt GMM in our learning-based method are tabulated
in Table I.

Learnt weights. Next, we obtained the optimal weight of
each channel for the conspicuity maps of each individual
image, using the optimization method of Section III-C. As
aforementioned, the optimal weightswF andwG for face and
facial feature channels depend on the face size. Figures 8-(a)
and -(b) plot the pairs of the face size and the corresponding
optimal weight. Also, the curves on fitting those pairs of
weight and face size are shown in Figures 8-(a) and -(b).
We further show in Figure 8-(c) the Pearson’s correlation
coefficient (PCC) [48] on evaluation the fitting performance.
It can be seen from this figure that PCC is nearly convergent
for both face and facial feature channels, once the order of
polynomial fitting is greater than 3. In our experiments, the
fourth order polynomial fitting were therefore adopted. Then,
the values for fitting coefficientsa5, a4, a3, a2, a1 anda0 of
(5) are6345.8, −2931.2, 491.0, −36.4, and 1.1, and values
for b5, b4, b3, b2, b1 and b0 of (6) are −6474.3, 3146.4,
−545.1, 38.6, and−0.1. Beyond, the ratio forwC : wI : wO is
8 : 3 : 30, as the averaged optimal weights of color, intensity,
and orientation channels are0.016, 0.006, and0.06. Finally,
the saliency maps of all test images can be worked out by (3),
with the aforementioned GMMs and optimal weights.

B. Testing results on our database

AUC, CC and NSS. In order to evaluate the performance
of saliency detection, we tabulate in Table II the AUC, CC and
NSS results of our and other 10 methods. Note that methods
with a larger AUC and NSS value, a CC value closer to +1/-1,
can better predict the human fixations. In Table II, the evalu-
ation values are averaged over all 150 test images. Here, the
results with and without center bias (CB) are provided. For fair
comparison, all methods used the same CB filter [14]. As seen
from Table II, the methods with top-down features, i.e., Cerf et
al. [32], Juddet al. [38], Zhaoet al. [40], Jiang [41] and ours,
perform better than the bottom-up methods. This is because

face, as a high-level feature, is crucial for improving saliency
detection accuracy. Note that the latest Jiang [41] performs
worst among all top-down methods, due to the fact that it
deals with multiple faces rather than single face. Furthermore,
our method outperforms other 10 state-of-the-art top-downand
bottom-up methods in terms of AUC, CC and NSS. Specially,
without CB modeling, there is 0.02 improvement of AUC,
1.02 increase of NSS and 0.17 enhancement of CC over Zhao
et al. [40], which also integrates the top-down face channel
and learns its corresponding weight from training data. The
possible reasons for our method outperforming Zhaoet al.
[40] are that (1) the GMM distribution of saliency of face
region is learnt from training data and then incorporated in
our method, and that (2) the weights of top-down channels are
learnt regarding face size. Obviously, our method is superior
to other methods.

Saliency map.We show the saliency maps of our and other
10 methods in Figure 9. As this figure shows, the saliency
map of our method is much more closer to the distribution
of human fixations than other 10 methods. Specifically, in our
method, when the face size is small (i.e., from first to fourth
rows), the face channel in the form of learnt non-isotropic
Gaussian works more than other channels, as it is closer to
the distribution of human fixations. Similarly, when the face
size is large (i.e., from fifth to tenth rows), the success of
our saliency results mostly attributes to the channel of facial
features, which modeled by the learnt GMMs. Moreover, our
method is adaptive to predict human attention on faces with
different sizes, since the optimal wights for face and facial
feature channels in our method can be adjusted according to
face size.

C. Testing results on other databases

In order to test the generalization of our method, we
compared our and other 10 methods on detecting saliency of
all qualified face images3 from MIT and NUSEF databases.
Note that the model parameters of Section IV-A were utilized
here, and they were trained on our database. Similar to Section
IV-B, we use AUC, NSS, and CC metrics to evaluate the
saliency detection results of all methods. They are reported
in Tables III and IV for the scenarios with and without CB,
respectively.

As seen from Table III, with the same CB, our method
enjoys at least 0.01, 0.19, and 0.04 improvement in AUC,
NSS, and CC, for MIT database. For NUSEF database, there
exists at least 0.01, 0.23, and 0.06 enhancement in AUC, NSS,
and CC. Similar enhancement can be found from Table IV
for the case without any CB. Despite being trained on our
database, our method still has good performance on other two
databases. This verifies the effectiveness of our method in the
generalization.

3In other databases, all images that contain one frontal faceat high quality
were selected as qualified images for the test. In this case, 55 and 107 face
images were chosen from in MIT and NUSEF databases, respectively, and
they are available online:https : //github.com/RenY un2016/face.
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Fig. 7. Contours of learnt GMMs with various numbers of Gaussian components.
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Fig. 8. Fitting weights for face and facial feature channels. Blue dots are the optimal weights of face or facial feature channel in all training images. The
red lines in (a) and (b) are the fitting curves of blue dots. (c)shows the PCC values in various orders of polynomial fitting curves.

TABLE II
THE MEAN VALUES (STANDARD DEVIATION) COMPARISON OF OUR AND OTHER METHODS OVER OUR DATABASE

Metric CB Model Our Itti[8] Cerf[32] Judd[38] Zhao[40] Duan[14] Hou[18] Erdem[22] Zhang[28] Jiang[41] OBDL[25]

AUC
Non-CB 0.90(0.04) 0.52(0.07) 0.86(0.06) 0.77(0.10) 0.88(0.05) 0.79(0.09) 0.70(0.16) 0.84(0.06) 0.82(0.11) 0.78(0.11) 0.75(0.15)
With CB 0.90(0.04) 0.77(0.07) 0.87(0.05) 0.86(0.06) 0.88(0.04) 0.85(0.06) 0.79(0.10) 0.84(0.06) 0.86(0.07) 0.83(0.07) 0.81(0.10)

NSS
Non-CB 3.38(0.78) 0.12(0.41) 1.68(0.47) 1.00(0.50) 2.36(0.73) 1.17(0.60) 0.71(0.74) 1.64(0.87) 1.38(0.73) 1.25(0.72) 1.01(0.95)
With CB 3.41(0.78) 0.31(0.51) 1.82(0.50) 1.40(0.32) 2.42(0.71) 1.56(0.59) 1.09(0.73) 1.60(0.93) 1.74(0.71) 1.52(0.70) 0.82(0.81)

CC
Non-CB 0.80(0.08) 0.02(0.09) 0.46(0.09) 0.28(0.13) 0.63(0.10) 0.29(0.14) 0.19(0.20) 0.46(0.21) 0.37(0.18) 0.36(0.19) 0.26(0.24)
With CB 0.82(0.07) 0.08(0.12) 0.53(0.10) 0.42(0.07) 0.68(0.09) 0.41(0.13) 0.32(0.19) 0.47(0.23) 0.49(0.17) 0.45(0.18) 0.37(0.22)

TABLE III
THE MEAN VALUES (STANDARD DEVIATION) COMPARISON OF OUR AND OTHER METHODS WITHCB MODELING, OVER MIT AND NUSEFDATABASES

Database Metric Our Itti[8] Cerf[32] Judd[38] Zhao[40] Duan[14] Hou[18] Erdem[22] Zhang[28] Jiang[41] OBDL[25]

MIT
AUC 0.85(0.05) 0.74(0.07) 0.83(0.06) 0.81(0.07) 0.84(0.05) 0.80(0.07) 0.76(0.09) 0.81(0.07) 0.84(0.06) 0.80(0.06) 0.79(0.09)
NSS 2.57(0.72) 0.47(0.70) 1.65(0.55) 1.19(0.33) 2.38(0.70) 1.39(0.57) 1.03(0.70) 1.42(0.75) 1.61(0.62) 1.17(0.45) 1.25(0.63)
CC 0.72(0.12) 0.14(0.17) 0.52(0.14) 0.41(0.10) 0.68(0.12) 0.46(0.16) 0.34(0.20) 0.46(0.20) 0.51(0.16) 0.45(0.22) 0.43(0.23)

NUSEF
AUC 0.83(0.05) 0.72(0.06) 0.81(0.05) 0.80(0.06) 0.82(0.05) 0.80(0.07) 0.75(0.08) 0.80(0.06) 0.81(0.06) 0.79(0.07) 0.79(0.07)
NSS 1.94(0.56) 0.21(0.38) 1.42(0.38) 1.17(0.31) 1.71(0.50) 1.33(0.52) 0.95(0.54) 1.25(0.65) 1.39(0.48) 1.31(0.57) 1.27(0.56)
CC 0.75(0.11) 0.08(0.11) 0.60(0.12) 0.51(0.10) 0.69(0.12) 0.56(0.16) 0.40(0.20) 0.52(0.21) 0.56(0.13) 0.46(0.22) 0.41(0.21)

Average
AUC 0.84(0.05) 0.73(0.06) 0.82(0.06) 0.80(0.06) 0.83(0.05) 0.80(0.07) 0.76(0.09) 0.81(0.06) 0.82(0.06) 0.79(0.07) 0.79(0.08)
NSS 2.14(0.68) 0.29(0.48) 1.49(0.45) 1.18(0.32) 1.93(0.65) 1.35(0.54) 0.97(0.59) 1.31(0.69) 1.46(0.54) 1.26(0.53) 1.27(0.58)
CC 0.74(0.11) 0.10(0.13) 0.58(0.13) 0.48(0.11) 0.69(0.12) 0.53(0.17) 0.38(0.20) 0.50(0.21) 0.55(0.14) 0.45(0.22) 0.42(0.21)
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TABLE IV
THE MEAN VALUES (STANDARD DEVIATION) COMPARISON OF OUR AND OTHER METHODS WITHOUTCB MODELING, OVER MIT AND NUSEF

DATABASES

Database Metric Our Itti[8] Cerf[32] Judd[38] Zhao[40] Duan[14] Hou[18] Erdem[22] Zhang[28] Jiang[41] OBDL[25]

MIT
AUC 0.85(0.06) 0.64(0.09) 0.82(0.07) 0.76(0.09) 0.84(0.05) 0.81(0.06) 0.50(0.21) 0.79(0.08) 0.81(0.07) 0.76(0.09) 0.74(0.13)
NSS 2.57(0.70) 0.56(0.73) 1.58(0.50) 0.99(0.44) 2.39(0.69) 1.36(0.49) 0.74(0.78) 0.92(0.59) 1.35(0.61) 1.02(0.50) 1.00(0.71)
CC 0.72(0.12) 0.13(0.17) 0.50(0.13) 0.32(0.14) 0.68(0.13) 0.44(0.13) 0.24(0.23) 0.30(0.18) 0.42(0.17) 0.33(0.22) 0.27(0.23)

NUSEF
AUC 0.82(0.05) 0.64(0.10) 0.80(0.05) 0.73(0.08) 0.81(0.05) 0.8(0.06) 0.44(0.21) 0.78(0.07) 0.77(0.09) 0.76(0.08) 0.75(0.10)
NSS 1.91(0.56) 0.28(0.43) 1.33(0.35) 0.92(0.39) 1.67(0.52) 1.30(0.41) 0.65(0.54) 0.85(0.48) 1.15(0.52) 1.17(0.56) 1.01(0.63)
CC 0.73(0.12) 0.07(0.10) 0.56(0.13) 0.38(0.15) 0.66(0.13) 0.55(0.13) 0.27(0.22) 0.35(0.19) 0.46(0.18) 0.35(0.22) 0.28(0.22)

Average
AUC 0.83(0.06) 0.64(0.10) 0.81(0.06) 0.74(0.09) 0.82(0.06) 0.80(0.06) 0.46(0.21) 0.78(0.07) 0.78(0.09) 0.76(0.09) 0.74(0.11)
NSS 2.12(0.68) 0.37(0.53) 1.41(0.42) 0.94(0.41) 1.90(0.67) 1.32(0.43) 0.68(0.63) 0.87(0.52) 1.21(0.56) 1.12(0.54) 1.00(0.65)
CC 0.72(0.12) 0.09(0.13) 0.54(0.13) 0.36(0.15) 0.67(0.13) 0.52(0.14) 0.26(0.22) 0.34(0.19) 0.45(0.17) 0.34(0.22) 0.28(0.23)

Fig. 9. Saliency maps of our method and other state-of-the-art methods without any CB.

D. Improvement analysis of our method

In this subsection, we focus on investigating the saliency
detection improvement of our method at different face sizes.
Since Section IV-B has shown that Zhaoet al. [40] performs
the best except our method, we use [40] as an anchor for
the improvement analysis of our method. Here, all 150 test
images of Section IV-B were used for our analysis. These 150
images were first sorted by increased face sizes, and then they
were averagely divided into 10 groups according to the sizes
of their corresponding faces. As a result, each group contains
15 images with similar-sized faces. Finally, the averaged face
sizes and improvement of each group (in terms of AUC, NSS,
and CC) were calculated for the analysis.

Figure 10 shows the averaged improvement of saliency
detection accuracy over Zhaoet al. [40] for the 10 groups
of images, the averaged face sizes of which monotonically
increase. From this figure, we can see that the greater im-

provement can be achieved in our method, when the face
size is large (generally over 0.044) in the image. This implies
that our method performs better when images are with large-
sized faces. Such better performance is probably due to the
effectiveness of GMM modeling on facial feature channel,
as Figure 8 shows that the weight of facial feature channel
roughly arrives at maximal value once the face size is larger
than 0.05.

V. I MAGE COMPRESSION APPLICATION

In fact, saliency detection has potential to be applied in some
computer vision and image processing tasks, such as image
compression, image retargeting and visual quality assessment.
In this section, we presented a simple application of our
saliency detection method to face image compression. Some
advanced approaches may be also developed on the basis of
our saliency detection method, for the further improvement.
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(a) AUC Improvement

(b) NSS Improvement

(c) CC Improvement

Fig. 10. AUC, NSS, and CC improvement of our method over Zhaoet
al. [40], along with increased face sizes. Note that the averaged results are
reported here for 10 groups of images, each of which containsfaces at similar
sizes. Specifically, the horizontal axes stand for the face size averaged in each
group. The vertical axes mean the averaged accuracy improvement of our
method over [40], in (a) AUC, (b) NSS, and (c) CC. Note that theresults of
saliency detection with CB and without CB are both shown in this figure.

However, it is out of the scope of this paper, as we only
focus on the potential of our saliency detection method in
the application of face image compression.

A. Approach for face image compression

Figure 11 summarizes the framework of our approach for
face image compression. As can be seen from this figure, a
preprocess step is integrated into the conventional Joint Pho-
tographic Experts Group (JPEG) approach. In the preprocess
step, our saliency detection method is applied to generate the
saliency map of the input face image. Then, the input image
is preprocessed by an LPF, the cutoff frequency of which is
determined by the saliency map. That is the non-salient regions
correspond to low cutoff frequency in the LPF, such that

Fig. 11. The framework of our approach for face image compression, which
is based on our saliency detection method and the conventional JPEG encoder.

the detailed texture is removed in these regions. Finally, the
preprocessed image is compressed by the JPEG encoder. As
a result, the texture details are reduced in non-salient regions
with little overall quality degradation, as these regions can
hardly attract attention. In return, the bit-rates of compressed
images can be saved or the quality of salient blocks (e.g.,
face and facial features) can be enhanced using saved bit-
rates. Since the preprocess of our approach is independent of
the encoder, it can be easily transplanted into other state-of-
the-art encoder4.

The same as JPEG, the input image (denoted byP) is
divided into N non-overlapping blocks with8 × 8 pixels,
i.e., P = {pn}Nn=1. Mathematically, each blockpn can be
processed to bep∗

n by

p∗

n = IDCT (LPF(DCT (pn))), (7)

whereDCT and IDCT denote the DCT and inverse DCT,
respectively. In (7), LPF(·) is an LPF as follows,

d∗n(i, j) =

{

dn(i, j) i+ j ≤ Tn

0 i+ j > Tn,
s.t. 1 ≤ i, j ≤ 16,

(8)
In (8), dn(i, j) andd∗n(i, j) are the(i, j)-th DCT coefficients
of the n-th block before and after the LPF.Tn is the cutoff
frequency of the LBF for then-th block, which is proportional
to its averaged saliencySn. For more details about the
calculation ofTn, see Appendix A. Finally, the preprocessed
imageP∗ = {p∗

n}
N
n=1 can be obtained with (7) and (8), and

then compressed by the conventional JPEG encoder.

B. Results of face image compression

Since our approach simply adds a preprocess step before
the JPEG encoder, we compare the results of our and con-
ventional JPEG approaches on compressing ten face images.
These ten images include all color face images from [49]
(i.e., Lena, Tiffny, Girl01, Girl02 and Girl03), and five face
images randomly selected from our test set of Section IV (as
shown in Figure 12). Here, DMOS is used as the metric for
evaluating the subjective visual quality of compressed images.
See Appendix B for our subjective experiment on obtaining
the DMOS value of each compressed image.

First, we report in Table V the visual quality improvement
of our approach, in terms of the DMOS difference. In general,

4Here, the JPEG encoder is used in our application, due to its extremely
high popularity. In fact, most of other state-of-the-art image encoders, such
as H.265 intra coding, are also block-based approaches. Thus, they can be in
conjunction with our saliency detection method for the further improvement
of coding efficiency.
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TABLE V
DMOS COMPARISON OF OUR AND CONVENTIONALJPEGAPPROACHES

FOR COMPRESSING IMAGES AT SAME LOW BIT-RATES

Image Resolution Bit-rate (bpp) DMOS
(pixel) JPEG Our JPEG Our Diff.

Lena 512×512 0.37 0.37 72.0 58.1 −13.9

Tifffny 512×512 0.27 0.27 62.9 57.0 −5.9

Girl01 256×256 0.37 0.37 60.6 53.8 −6.8

Girl02 256×256 0.29 0.29 73.6 66.7 −6.9

Girl03 256×256 0.45 0.45 61.1 56.7 −4.4

Fig.12(a) 1920×1080 0.20 0.20 59.9 52.4 −7.5

Fig.12(b) 1920×1080 0.27 0.27 77.7 58.9 −18.8

Fig.12(b) 1920×1080 0.19 0.19 56.5 50.2 −6.3

Fig.12(d) 1920×1080 0.29 0.29 73.3 54.9 −18.4

Fig.12(e) 1920×1080 0.24 0.23 73.8 65.3 −8.5

Average - - - - - −9.7

TABLE VI
BIT-RATE COMPARISON OF OUR AND CONVENTIONALJPEGAPPROACHES

FOR COMPRESSING IMAGES AT THE SIMILARDMOS

Image Resolution Bit-rate (bpp) DMOS
(pixel) JPEG Our Saving JPEG Our Diff.

Lena 512×512 7.01 5.32 24.1% 33.9 38.2 +4.3

Tifffny 512×512 6.96 6.09 12.5% 40.7 35.9 −4.8

Girl01 256×256 6.98 6.05 13.3% 34.7 35.6 +0.9

Girl02 256×256 5.20 4.13 20.1% 39.7 38.6 −1.1

Girl03 256×256 6.56 5.81 11.4% 35.3 40.0 +4.7

Fig.12(a) 1920×1080 4.94 3.67 25.7% 33.3 33.4 +0.1

Fig.12(b) 1920×1080 5.03 3.09 38.6% 37.7 41.7 +4.0

Fig.12(c) 1920×1080 3.88 3.41 12.1% 36.0 33.4 −2.6

Fig.12(d) 1920×1080 4.91 4.12 16.1% 41.8 39.8 −2.0

Fig.12(e) 1920×1080 4.43 3.74 15.6% 39.5 39.5 +0.0

Average - - - 19.0% - - +0.4

the smaller DMOS means better subjective quality of the
compressed image. Thus, Table V shows that at the same
(low) bit-rate, the subjective quality of images compressed by
our approach is much superior to those compressed by JPEG.
Next, Table VI tabulates the bit-rate saving of our approach
with JPEG as an anchor. We can see from this table that our
approach has19% bit-rate saving in average, with roughly
similar subjective visual quality.

Figure 13 further visualizes two selected images compressed
by our and the conventional JPEG approaches, respectively.
From these pictures, one may observe that there exist evident
block effects and severe visual distortion in face for the images
compressed by JPEG. By contrast, our approach has better
visual quality in face regions at the expense of quality degra-
dation in other non-salient regions, thus favoring the subjective
feeling on compressed images. In summary, our approach is
able to improve the performance of the widely used JPEG
encoder, which demonstrates an effective application of our
saliency detection method.

VI. CONCLUSIONS

In this paper, we have proposed a learning-based method
for detecting saliency on face images, which utilizes face and
facial features as two top-down feature channels to predict
saliency. To analyze fixation distribution on face regions,we
conducted an experiment to obtain an eye-tracking database
composed of 510 face images. Based on the statistical analysis
over our database, we proposed to learn GMMs, which are
modeled to compute saliency for both face and facial features.
Note that the parameters of GMMs were learnt from the eye

tracking data of the training set. In our method, the saliency
map was computed by the linear combination of GMM-based
features (face and facial feature) and the traditional low-
level features (color, intensity, and orientation). Besides, we
validated that there is a kind of relevance between the weights
of the linear combination for each channel and face size in
an image, which can also been learnt from the training set.
The evaluation results of AUC, CC, and NSS showed that,
compared to other 10 state-of-the-art methods, our method
predicted saliency with much higher accuracy. Finally, we
demonstrated a simple yet effective application of our saliency
detection method on face image compression.

There may exist two research directions for the future work.
(1) Our work in this paper only considers the frontal faces. In
fact, the head pose may also influence the distribution of visual
attention on face. Thus, the saliency detection work related to
head pose remains to be done, for images with non-frontal
faces. (2) Our work in the current form only deals with still
face images. In practice, faces are more likely to appear in
videos, such as video conferencing scenarios. Thus, extension
of our method to conversational videos, incorporating motion
information of facial features, shows a promising research
trend in future.

APPENDIX

A. Calculation of cutoff frequency Tn

As aforementioned, the cutoff frequencyTn of the n-th
block should be proportional to its averaged saliencySn. So,
Tn may be defined by

Tn = β · eα·Sn , (9)

whereα > 0 and β > 0 are two parameters to control the
cutoff frequencyTn upon averaged saliencySn. They can be
estimated with the following assumption. For the non-salient
blocks with Sn = 0.001, we assume thatTn = 1. For the
salient blocks withSn = 0.1, we assume thatTn = 15. Then,
α andβ can be achieved via solving the following equations:

{

βe0.001·α = 1

βe0.1·α = 15.
(10)

After solving the above equations, we haveα = 27.354 and
β = 0.973. Finally, the cutoff frequency isTn = 0.973 ·
e27.354·Sn , for our image compression approach.

B. Subjective assessment for DMOS

DMOS measures subjective quality difference between com-
pressed and uncompressed images. In this paper, it was ob-
tained in the IVQUEST software, by designing the following
subjective assessment.

In our subjective assessment, we utilized a single stimulus
continuous quality scale (SSCQS) procedure to rate the sub-
jective quality, which is proposed in Rec. ITU-R BT.500 [50].
The scales available for the quality rate are: excellent (100-
81), good (80-61), fair (60-41), poor (40-21), and bad (20-1).
In our assessment, 10 observers, aging from 19 to 34, were
involved to rate the subjective quality of all uncompressed
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(a) (b) (c) (d) (e)

Fig. 12. Original images used for image compression. Note that these five images were randomly selected from our 150 test images of Section IV.

(a) JPEG (b) Our approach

(c) JPEG (d) Our approach

Fig. 13. Visual quality comparison of two compressed images. (a) and (b) show the image of Figure 12(b) compressed by the conventional JPEG approach
and our approach at 0.27 bpp. (c) and (d) show the image of Lenacompressed by the conventional JPEG approach and our approach at 0.37 bpp.

and compressed images. For the subjective assessment, a 24”
SAMSUNG S24B370 LCD monitor was used to randomly
display images at their original resolutions. As such, the
distortion of scaling operations can be avoided.

Besides, for rational evaluation, the viewing distance for
observers was set to be approximately three times of the image
height.

After the subjective assessment of all observers, we obtained
raw subjective scores of each image. Finally, DMOS for each
compressed image is obtained upon those raw scores were
converted, using the method in [51]. The DMOS values indi-
cate the subjective visual difference between the uncompressed
reference and compressed test images.
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