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Abstract—In this paper, we propose a novel method to detect maps of all three feature channels. The fast decade has
saliency on face images. In our method, face and facial feates witnessed extensive advanced work on bottom-up saliency
are extracted as two top-down feature channels, linearly itegrat- detection, e.g., [9]-[29]. For example, benefitting fromajgh

ed with three traditional bottom-up features of color, intensity, ; .
and orientation, to yield final saliency map of a face image. B theory, graph-based visual saliency (GBVS) method [12] was

conducting an eye tracking experiment, a database with huma Proposed to detect the saliency of an image, by forming
fixations on 510 face images are obtained for analyzing the and then normalizing activation maps, which are also based
fixation distribution on face region. We find that fixations onface gn the bottom-up features of color, intensity and orieotati

regions can be well modeled by Gaussian mixture model (GMM), Later, the wavelet transform was applied in [13] as a kind

corresponding to face and facial features. Accordingly, wenodel . . .
face saliency by Gaussian mixture model (GMM), iearnt from of bottom-up features for saliency detection. Taking advan

the training data of our database. In addition, we investigge tage of the development in signal processing field, some
that the weights of face feature channels rely on the face sz latest signal processing algorithms have been incorpbrate

in images, and the relationship between the weights and face jn saliency detection, e.g., spectral analysis based [18]-
size is therefore estimated by learning from the training daa of sparse representation based [20], [21], and region cova@

our eye tracking database. The experimental results valida that
our learning-based method is capable of dramatically impreing based [22] methods. Recently, other advanced methods, e.g.

the accuracy of saliency detection on face images over otha0 Online salient dictionary learning (OSDL) [27] and boolean
state-of-the-art methods. Finally, we apply our saliency dtection map based saliency (BMS) [28], have also been proposed
method to compress face images, with an improvement on visbia to predict image saliency. Most recently, some convolaion
quality or saving on bit-rate over the existing image encode neural networks (CNN) approaches, such as [23], [24] have
Index Terms—Saliency detection, GMM, face image. been proposed, benefitting from the development of deep
learning. In compressed domain, [25] and [29] have been
proposed to detect saliency via utilizing bottom-up feasur
of H.264 and H.265 bitstreams, respectively.

|. INTRODUCTION
A. Background

T HE study on the human visual system (HVS) [2] reveals |n fact, top-down visual features is significant in deter-
that the distribution of human visual attention on a scenfiining the saliency of images/videos. Thus, the top-down
is uneven. In other words, most attention is drawn by a smallethods of saliency detection have been studied broadly in
region (namely salient region), whereas little attentioouses [30]-[36]. For face images, Ce#t al. [32] found that face

on other region (non-salient region). As a result, human ji§ a significant top-down cue to draw attention, as their eye
able to survive in everyday tremendous visual data. Priedict tracking experiments shows that faces were fixated on in
the distribution of visual attention on images or videosns &g.9% within first two fixations (150 face images viewed
important way to explore how human perceive the world, ang, 7 subjects). Therefore, they combined Viola & Jones
saliency detection is such a way to make computers predict {/J) face detector [37] with Itti's model [8], to improve the
distribution of visual attention. In fact, saliency detenthas performance of saliency detection for face images. Sine it
been extensively applied in many computer vision and imaggore reasonable to learn how important face is on drawing
processing areas, like object detection [3], object segatien visual attention, some latest methods [38]-[42] have been
[4], visual quality assessment [5], image retrieval [6] anfroposed to employ machine learning algorithms to advance

image/video coding [7]. top-down saliency detection of Cerf’s work [32]. For instan
Juddet al. [38] utilized a classifier to learn several low, middle
B. Related work and high level image features (e.g. intensity, gist feataned

The existing methods for saliency detection can be diviad@ces) to combine top-down and bottom-up saliency detectio
into two classes: either bottom-up or top-down methods. T a single unified formulation. Besides, Zhao [40] quartifie

pioneering bottom-up method on saliency detection isslttit e weight of the face channel on drawing attention by utigiz

model [8]. In [8], Itti et al. proposed to establish Center_fixations on face images. Lately, Jiamty al. [41] extended

surround responses in feature channels of color, inteasity Cerf_’s work [32_] to de_tect Sa"e”CY in_ a scene compos_ed of
orientation, for yielding the conspicuity maps. Then, thelfi multiple ches, €., salu_ancy detect|on_ in a crowd. Spmilfy,_
saliency map is achieved by linearly integrating consprjcui]cor detectmg saliency in a crowd, Jiang emplc_)yeq r_nult!ple
kernel learning (MKL) to learn a more robust discrimination
Y. Ren, Z. Wang and M. Xu are with the School of Electronic andetween salient and non-salient regions in multi-face esen
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A short version of this paper was presented in ICCV 2015 [1]. in the images, i.e., small, medium and large.



(a) Fixation Heatmap

(c) Isotropic GM [40] (d) Learnt GMM

Fig. 1. Learnt GMM vs Isotropic GM for modeling saliency ircé&aregion. Both fixations and saliency maps on the face regioe displayed.

C. Our work and main contributions « We model human visual attention attended to face regions
using learnt GMM distribution, the weights of which are
also learnt with respect to face sizes.

o We apply our saliency detection method to the task of
face image compression, which enables bit-rate saving or
quality improvement over existing image encoders.

Although faces have considered for saliency detectionén th
traditional approaches, these approaches do not explare fix
tion distribution within faces. As can be seen in Figure E, th
assumption of a simple isotropic Gaussian model (GM) [32],
[40] for saliency distribution in face cannot well model wéd
attention drawn by faces. We can see from this figure that, for
images including small faces, the non-isotropic GM is witBD. Organization of this paper

high accurate in modeling saliency distribution on facer FO The rest of this paper is organized as follows. In Section I,

images including large faces, a single GM is not sufficiest, §e introduce our eye tracking database with a detailed anal-
fixations tend to cluster around the facial features (ey®SE ysis. Then, Section IIl proposes a novel method for saliency
Hence, saliency distribution, in the form of Gaussian nm&tu getection on face images. Section IV shows the experimental
model (GMM), needs to be learnt from eye fixations on fagggylts to validate our proposed method. Afterwards, Becti

images. Figure 1-(d) illustrates that saliency with theréa y giscusses an application of our saliency detection method
GMM distribution is more consistent with the ground trU”FinaIIy Section VI concludes this paper.

attention. To be more specific, one non-isotropic Gaussian
component needs to be modeled for images with small faces,
while more than one component can be modeled for images
with large-face. Despite GMM already being incorporated in Upon face images, face is an obvious top-down feature
face saliency detection, it merely concentrates on the GNIM ®r drawing visual attention. Furthermore, intuitivelycfal
fix-sized faces, such that it cannot be used to detect sgliefigatures (i.e. eyes, nose, and mouth) may attract more human
of images with face at various sizes. Thus, we propose fi§ations than other regions in face. To verify this insight,
this paper a learning-based method for saliency detectioth, We conducted a database of face images and analyzed the
it learns various GMMs and the corresponding weights acro®gation distribution in our database. This section intrces!
different face sizé's to predict visual attention on free-viewingour database and analysis. Specifically, Section II-A dises
face images. the details in database conduction, and Section 1I-B lists t
This paper is an extended version of our conference pagélysis results on fixations in our database.
[1]. Beyond [1], this paper investigates the improvement of
our method for saliency detection of faces at various SitB8. A Database

generalization of our method is validated by implementing o For the analysis of visual attention on face images, we

method on our database and two other public databasest, rathe . . .
) : : conducted an eye tracking experiment to establish a daabas

than only testing on our database in [1]. Moreover, this papée L . 2 . .
containing extensive fixations on various face images. To

provides a potential application of our method in JPEG—basBe more specific, we follow the below steps to set up our
face image compression. The main contributions of this pap '

are listed as follows: ueatgbase: .
Firstly, we randomly selected 510 face images from Google.

« We establish a large-scale eye tracking database fffere are two criteria when selecting images: (1) The oaigin

visual attention analysis on face images. The ground trytfiso|ution of images i4920 x 1080. (2) All images contain
fixations and images of our database are available o?nlingmy one frontal face (turning degree of head45°. As a

result, we found that the face sizes in all images vary from

!In this paper, the face size means the proportion of pixelbemof the () 4016 to (.3018. Figure 2 illustrates all face sizes of 510
face region to that of the whole image.

2The database is available on our webshetps : //github.com/Ren ~ 'Mages. In t_hls figure, we can see that face sizes are didbu
Yun2016/ face. in log function.

II. DATABASE AND ANALYSIS
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points. Through the statistical analysis, we have obtathed
following observations:
Fig. 3. Eye fixations and pixel numbers belonging to facecwgiand Observation 1: Face attracts significantly more visual atten-
background regions. tion than background.
Here, we count fixations of all 510 face images falling into
face and background, and list the results in Figure 3. Bsside
Secondly, 14 male and 10 female, aging from 19 to 35, wene also count the pixels belonging to face and background.
employed as volunteers to observe 510 face images in our &em Figure 3, we can see that although faces averagely take
tracking experiment. Note that among 24 subjects there wene only 5.7% of whole images, they drav62.3% of eye
two subjects having research experience of saliency detect fixations. The results imply that face is more important than
and other 22 subjects without any background in salienbpackground on attracting visual attention. This compléhes
detection were native to the purpose of the eye trackimgalysis of Observation 1.
experiment. Observation 2: Face attracts more visual attention when face
Thirdly, we conducted our eye tracking experiment bgize enlarged.
utilizing a Tobii TX300 eye tracker to record the fixations of It is an insight that visual attention on face increases when
24 subjects. Tobii TX300 was applied at a sample rate of 3@#ce size is enlarged. To validate such a insight, we plot in
Hz, with the same resolution {20 x 1080) as face images. The Figure 4 the proportions of fixations on faces versus faassiz
distance between subjects and the monitor of the eye tragkeior all 510 images in our database. As shown in Figure 4,
around60 cm. Thus, the visual angle of the stimuli was abouhe proportions of fixations on faces grow when face size is
26.8° x 46.0°. Besides, all subjects were required to have 9acreased. Besides, all points for proportion of fixatioms o
point calibrations for the eye tracker before the experimeffiace are above the curve of random hit. The random hit curve
During the experiment, all subjects look at images with freés defined as the probability that a fixation falls into theioeg
view mode. Note that all images are displayed randomly, aofl face at random. This again shows that face is with rather
a 2-second displaying of black image was inserted to corrdatge saliency in an image. Besides, one may see from Figure
a drift. 4 that the increment of fixation fitting curve is much faster
After the experiment, we collected 151,511 fixations fathan that of the random hit, alongside the enlarged face size
all 510 images, averagely about 300 fixations for eacdfherefore, we can conclude that much more attention is paid
image. Note that we provide all 510 face images, eye face once the face is viewed at a large size. This completes
tracking data, and corresponding Matlab code /aips : the analysis of Observation 2.
//github.com/RenYun2016/ face for further saliency de-  Observation 3: Visual attention on eyes and mouth increases
tection research. along with the enlarged size of face in videos, whereas the
attention on nose is invariant to the face size.
Compared with other region in face, facial features have
more complex textures. Thus, it is intuitive that visuaéation
Based on the above eye tracking database, we analyze dhefacial features, i.e., left eye, right eye, nose, and mout
distribution of visual attention on face and facial featuremay be much more than that on other region in face, when
All 510 face images containing 151,511 fixations in théhe image is displayed with a close up view of face. Then, we
database are included in the statistical analysis. It shbel investigate the visual attention on facial features byistteal
noted his paper applies a real-time face alignment methadalysis on distribution of the eye fixations within faceioeg
[43] to extract face and facial features from face imagem our database. Figure 5 shows the proportions of fixations
obeying the point distribution model (PDM) with 66 landmarlon each facial feature versus face sizes, over all 510 images

e

Background = Face Background ® Face

B. Database analysis
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Fig. 5. Proportions for fixations in facial features. Theeblooints are proportions for fixations in facial features bf540 images. Besides, the red line
stands for the linear fitting curve of all blue points. Theegrdine is the probability that points randomly falling intlee facial feature region, same as the
proportion of each facial feature region to the whole image.

We can find out from this figure that more attention is drawn In fact, the GMM can be learnt from fixations of eye
in all facial features than the random hit. Besides, it can beacking data. Here, the EM algorithm [44] is applied to tear
also observed that the fixation fitting curves for facial teas, the GMM on the calibrated and normalized fixations falling
especially eyes, increase more sharply than the random hitp face regions. For the face channel, the similar way is
when face approaches to large size. However, proportionwdflized to learn GMM distribution of face, where only one
fixations on nose region is not grown. It is probably due tGaussian component, corresponding to face, is consideoed.
the fact that the visual attention shifts from face centar. (i the learnt results of GMMs on both face and facial feature
nose) to other facial features, such as eyes. This completeschannels, refer to Section IV.
analysis of Observation 3.

Based on the three observations, both face and facial f@f-sajiency detection

tures should be taken into consideration in saliency detect Given the learnt GMM, the top-down conspicuity maps on

and the weights corresponding to these two channels needs to .
be correlated with face sizes. Next, we propose our salien%‘ce channelly) and facial feature channey, denoted by

detection method, which mainly focuses on modeling fixati E/F) andC(G), can be worked out on the basis of (1) and

distribution over face and facial features 0&). However, for saliency detection the mean valugsn (1)
' and (2) are replaced by the central points of facial features

I1l. THE PROPOSED METHOD when the number of Gaussian components is 4. This is because
re may exist the deviation between the statistical oafgr
Gaussian components and the detected central points of

acial features (i.e., eyes, nose, and mouth). Note thafiaite

This section presents the proposed method for modeli
saliency on face and facial features. In Section IlI-A, w
propose to learn GMM from the training fixations. Next, wi . . . . .
present in Section IlI-B the saliency detection method,clvhi detection method is mentioned in Section 2.2.

is based on our learnt GMMs. Finally, we propose in Secticthe;(ti Sc’jm\;'v'il;r ttr(]) [t?;zgt’ t:]e top—?\owin c,;;)nfnplcunyfmalgs are
[1I-C the algorithm for obtaining optimal weights. egrate e bottom-up conspicuity maps of colG),(

intensity (), and orientation@). As a result, the final saliency
A. Learning GMM mapM can be generated by

According to our observations, the facial features draw ¥ = wcC(C) + wiC(I) + woC(0) + wrpC(F) + weC(G),
large amount of visual attention, when the face is of large 3)
size. Therefore, we can use the GMM to model the faciglhereC(-) is the normalized conspicuity map on each feature
feature channel, which has large-valued saliency withamafa channel.C(C), C(I), and C(O) can be obtained by the
features. First of all, we follow [1] to calibrate and norizal method in [11], wherea€§(F) andC(G) need to be yielded
positions of fixations across different face images within @pon the learnt GMM as aforementioned. In addition,=
uniformed coordinate system. Assuming that= (z/,y') is [wc,wr, wo,wr, wg]” are weights corresponding to feature
the calibrated and normalized coordinate of pginty) within ~ channels. They can be computed by least square fitting. For
a face, the GMM can be written as a linear superposition ofore details on computing these weights, refer to the next
Gaussian components in the form: subsection. Figure 6 shows an example of overall procedure
on our learning-based saliency detection method.

K
> N (g, Zi), (1)
k=1 C. Learning optimal weights
and Now, the remaining task for saliency detection with (3) is
1 Ty—1 to determine weightsv = [wc, wr, wo,wr,we]? for each
= J— — » _ 2 c,wr,Wo, Wr,Wa
Ne(x) = exp{ Q(X pe) Zy (k= )} @) conspicuity map. In this subsection, we focus on the compu-

where 7, p,, X are the mixing proportion, mean, andation on learning optimal weights from the training data of
variance of thek-th Gaussian component. In (1) is the our eye tracking database. Lei;, be the vectorized human
total number of Gaussian components. fixation map of a training image. Givem,;, we follow the



TABLE |
THE PARAMETERS OF THE LEARNTGMM

k=1 k=2 k=3 k=4
features right eye left eye nose mouth
Tl 0.192 0.306 0.222 0.280
) 0.007 0.001 0.013 —0.002 0.035 0.003 0.011 —0.001
k 0.001  0.009 —0.002 0.012 0.003 0.032 —0.001 0.033
5 =sF and
Al I
7
{ \ we(s) = g bis", (6)
1=0
Color Intensity Orientation Face Facial features

Section IV,I = 4 is capable of producing the precise fitting on
the pairs of weight and face size. Therefore, the fourth rorde
polynomial fitting is applied in this paper, and the values fo
{a;}t_, and{b;}4_, are to be discussed in Section IV.
After achievingwyr and w¢, other weightswe, wy, and
‘ wo are averaged over all training images to acquire the ratios
n between them. Then, oneg- andw have been calculated by

where {a;}!_, and {b;}{_, are the parameters of quadratic
--- n functions to fit forwr andwg, respectively. As analyzed in
{ J
|

Itti

w, W, we

(5) and (6),w¢, wy, andwo can be determined according to
the averaged ratios, with the constraint [pw||; = 1. Values
for the learnt parameters and ratios to yield weightsare

to be reported in Section IV. Finally, the saliency map of a
face image can be worked out via (3) with the learnt optimal
weights.

Saliency Map

Fig. 6. Framework of our learning-based saliency deteati@thod.

way of [40] to obtain weightsv for each training image, by
solving the following/s-norm optimization formulation:

IV. EXPERIMENTAL RESULTS

This section discusses experimental results for bothitrgin
and test in our method. Specifically, Section IV-A shows the
learnt results on the learnt GMMs and weights in training set
Sections IV-B and IV-C provide testing results of our method
whereV is a matrix with each column denoting the vectorizednd other 10 state-of-the-art methods evaluated on our and
conspicuity maps ofC, I, O F, and G. Note that for each other databases. In our experiments, the saliency evafuati
single image, (4) is solved to obtain an optimal weight metrics of the area under ROC curve (AUC), normalized
corresponding to this image. To solve (4), the disciplinestanpath saliency (NSS) [46], and linear correlation coeffi
convex programming approach [45] is utilized in our methodient (CC) [47] are utilized on all test images. Besides, the
Then, the optimal weights can be obtained for each singlaliency maps of several test images are also provided éor th
training image. Note that the weight optimization in outomparison. Finally, Section IV-D analyzes the improvemen
method is different from that of [40] which works on theof our method for images with different face sizes.
weights by fitting all training images.

Next, given the learnt weights for each individual image, wg Training results
concentrates on working out the optimal weights of saliency
detection, in light of different weightsv of various training

argmin [|[Vw —my||2, s.t. |w|i=1,w>0, (4)
w

In the experiment, all 510 face images in our database are

images. Specifically, we find that the optimal weights ar%i\'id(Ed into two groups: training and test sets, witho_u_t any
dependent on face sizes. This is also consistent with trerob%)ver!ap bettweelg _the 3t\év(<)) _groups. -I:[c;] 236%%;8 f.Sp?.C'f'C’ thg
vation of Section 1I-B, in which both face and facial featuire raining set contains 5ol 1mages with U0 Tixations an

tend to attract much more attention when face is with Iargige other 150 images with 45,444 fixations are included in tes

ize. Thereby, it is worth figuring out the relationshipsamstn - .
siz Y, It IS W guring ou onship Learnt GMMs . Based on the training set of 360 images,

wr and face size, and betwean; and face size. Here, .
the polynomial fitting is applied to model such relationshipwe obtain the learnt GMMs for top-down feature channels of

Consequently, assuming thatis the face sizewr and wg ;sr?hefncy dﬁtecnoln by lft'l'z'n?hthzmi;m%n Slectlon Igﬂbr .
can be expressed as follows, e face channel, we learn the with only one Gaussian

component. Note that the mean of the Gaussian component is
7 simply assumed to be the position of nose tip point in each

wp(s) = Z a;s’, (5) image (detected by the face alignment method_[43]), as it_ can

be seen as the center of face. Then, the covariance matrix for



the Gaussian component was learnt from training data, andfiéce, as a high-level feature, is crucial for improving eiady

learnt values are detection accuracy. Note that the latest Jiang [41] perform
worst among all top-down methods, due to the fact that it

9, = ( 0.024 0 > _ deals with multiple faces rather than single face. Furttoeem

0 0.039 our method outperforms other 10 state-of-the-art top-damah

As can be seen above, there exists the anisotropy in led?R{tomM-up methods in terms of AUC, CC and NSS. Specially,
GMMs, rather than the assumption on isotropy of Gaussi¥fithout CB modeling, there is 0.02 improvement of AUC,
distribution in [32]. 1.02 increase of NSS and 0.17 enhancement of CC over Zhao
For the facial feature channel, the number of Gaussi&h@- [40], which also integrates the top-down face channel
components has to be confirmed first. To determine the numB&¢! eams its corresponding weight from training data. The
of Gaussian components, we plot in Figure 7 the distribstioR0SSible reasons for our method outperforming Zleaal.
of the learnt GMMs, with different numbers of Gaussiaf*0] aré that (1) the GMM distribution of saliency of face
components. From this figure, we can see that the contoffgion is learnt from training data and then incorporated in
for GMMs with more than three components are similaPU" method, and that (2) the weights of top-down channels are
Accordingly, four-component GMM is utilized in our salignc learnt regarding face size. Obviously, our method is soperi
detection method. This is also consistent with our analyd® other methods.
in Section 1I-B that visual attention tends to cluster amun Saliency map.We show the saliency maps of our and other
four facial features (i.e., left and right eyes, nose, anditimp 10 methods in Figure 9. As this figure shows, the saliency
Hence, we assume that means of Gaussian components ardnté of our method is much more closer to the distribution
positions of the centers of facial features. The param@brsof human fixations than other 10 methods. Specifically, in our
the learnt GMM in our learning-based method are tabulat@dethod, when the face size is small (i.e., from first to fourth
in Table I. rows), the face channel in the form of learnt non-isotropic
Learnt weights. Next, we obtained the optimal weight ofGaussian works more than other channels, as it is closer to
each channel for the conspicuity maps of each individutile distribution of human fixations. Similarly, when the dac
image, using the optimization method of Section III-C. Asize is large (i.e., from fifth to tenth rows), the success of
aforementioned, the optimal weighis- andw for face and our saliency results mostly attributes to the channel offafac
facial feature channels depend on the face size. Figure$ 8fgatures, which modeled by the learnt GMMs. Moreover, our
and -(b) plot the pairs of the face size and the correspondifigthod is adaptive to predict human attention on faces with
optimal weight. Also, the curves on fitting those pairs dflifferent sizes, since the optimal wights for face and facia
weight and face size are shown in Figures 8-(a) and -(Bgature channels in our method can be adjusted according to
We further show in Figure 8-(c) the Pearson’s correlatididice size.
coefficient (PCC) [48] on evaluation the fitting performance
It can be seen from this figure that PCC is nearly convergent
for both face and facial feature channels, once the order @f Tegting results on other databases
polynomial fitting is greater than 3. In our experiments, the
fourth order polynomial fitting were therefore adopted. The In order to test the generalization of our method, we
the values for fitting coefficientss, a4, as, as, a1 andag of compared our and other 10 methods on detecting saliency of
(5) are6345.8, —2931.2, 491.0, —36.4, and 1.1, and values all qualified face imagésfrom MIT and NUSEF databases.
for bs, by, b, be, by and by of (6) are —6474.3, 3146.4, Note that the model parameters of Section IV-A were utilized
—545.1, 38.6, and—0.1. Beyond, the ratio fotwe : wr : wo is  here, and they were trained on our database. Similar tod®ecti
8 : 3: 30, as the averaged optimal weights of color, intensityy/-B, we use AUC, NSS, and CC metrics to evaluate the
and orientation channels afe016, 0.006, and0.06. Finally, saliency detection results of all methods. They are redorte
the saliency maps of all test images can be worked out by (8), Tables Ill and IV for the scenarios with and without CB,

with the aforementioned GMMs and optimal weights. respectively.
As seen from Table Ill, with the same CB, our method
B. Testing results on our database enjoys at least 0.01, 0.19, and 0.04 improvement in AUC,

NSS, and CC, for MIT database. For NUSEF database, there

AU_C’ CC and NSS' In order to_evaluate the Ioencormanceexists at least 0.01, 0.23, and 0.06 enhancement in AUC, NSS,
of saliency detection, we tabulate in Table Il the AUC, CC al d CC. Similar enhancement can be found from Table IV
NSS results of our and other 10 methods. Note that meth P the c.:ase without any CB. Despite being trained on our

with a larger AUC and NSS value, a CC value closer to +l/'giatabase, our method still has good performance on other two

can better predict the human fixations. In Table II, the evaly,ipages. This verifies the effectiveness of our methaaein t
ation values are averaged over all 150 test images. Here, g%?]eralization

results with and without center bias (CB) are provided. Bar f
comparison, all methods used the same CB filter [14]. As seen

from Table Il. the methods with tOp-dOWﬂ features. i.e. f@er 3In other databases, all images that contain one frontal datégh quality
| 1321 J dd, | 138]. zh | 1401, Ji 41 ’ d, were selected as qualified images for the test. In this c&sen 107 face
al. [32], Juddet al. [38], Zhaoet al. [40], Jiang [41] and OUrS, jnages were chosen from in MIT and NUSEF databases, resgigctand

perform better than the bottom-up methods. This is because are available onlingittps : //github.com/RenY un2016/ face.
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TABLE Il
THE MEAN VALUES (STANDARD DEVIATION) COMPARISON OF OUR AND OTHER METHODS OVER OUR DATABASE

Metric | CB Model Our 1tt[8] Cerfi32] Judd[38] Zhao[40] Duan[14] Hou[18] Erdem[22] | Zhang[28] | Jiang[41l] | OBDL25]
AUC Non-CB 0.90(0.04) | 0.52(0.07) [ 0.86(0.06) | 0.77(0.10) | 0.88(0.05) [ 0.79(0.09) | 0.70(0.16) | 0.84(0.06) | 0.82(0.11) | 0.78(0.11) | 0.75(0.15)
With CB 0.90(0.04) | 0.77(0.07) | 0.87(0.05) | 0.86(0.06) | 0.880.049 | 0.85(0.06) | 0.79(0.10) | 0.84(0.06) | 0.86(0.07) | 0.83(0.07) | 0.81(0.10)
NSS Non-CB | 3.380.78) | 0.12(0.41) | 1.680.47 | 1.00(0.50) | 2.36(0.73) | 1.17(0.60) | 0.71(0.74) | 1.64(0.87) | 1.38(0.73) | 1.25(0.72) | 1.01(0.95)
With CB | 3.470.78) | 0.31(0.51) | 1.82(0.50) | 1.400.32 | 2.42(0.71) | 1.56(0.59) | 1.09(0.73) | 1.60(0.93) | 1.74(0.71)| 1.52(0.70)| 0.82(0.81)
cc Non-CB 0.80(0.08) [ 0.02(0.09) | 0.46(0.09) [ 0.28(0.13) | 0.63(0.10) [ 0.29(0.14) | 0.19(0.20) | 0.46(0.21) | 0.37(0.18) | 0.36(0.19) | 0.26(0.24)
With CB | 0.82(0.07) | 0.08(0.12) | 0.53(0.10) | 0.420.09 | 0.68(0.09) | 0.41(0.13) | 0.32(0.19) | 0.47(0.23) | 0.49(0.17) | 0.45(0.18) | 0.37(0.22)

TABLE Il

THE MEAN VALUES (STANDARD DEVIATION) COMPARISON OF OUR AND OTHER METHODS WITHCB MODELING, OVER MIT AND NUSEFDATABASES

Database| Metric Our Itti[8] Cerf32] Judd[38] Zhao[40] Duan[14] Hou[18] Erdem[22] | Zhang[28] | Jiangl41] | OBDL{25]
AUC 0.850.05 | 0.74(0.07) | 0.83(0.06) | 0.81(0.07) | 0.840.05 | 0.80(0.07) | 0.76(0.09) | 0.81(0.07) | 0.84(0.06) | 0.80(0.06) [ 0.79(0.09)

MIT NSS | 2.570.72) | 0.47(0.70) | 1.65(0.55) | 1.190.39 | 2.38(0.70) | 1.39(0.57) | 1.03(0.70) | 1.42(0.75) | 1.61(0.62) | 1.17(0.45) | 1.25(0.63)

CcC 0.7240.12) | 0.14(0.17) | 0.52(0.14) | 0.410.1 0.68(0.12) | 0.46(0.16) | 0.34(0.20) | 0.46(0.20) | 0.51(0.16) | 0.45(0.22) | 0.43(0.23)

AUC 0.830.09 | 0.72(0.06) | 0.810.05 | 0.80(0.06) | 0.820.05 | 0.80(0.07) | 0.75(0.08) | 0.80(0.06) | 0.81(0.06) [ 0.79(0.07) [ 0.79(0.07)

NUSEF NSS 1.940.56) | 0.21(0.38) | 1.42(0.38) | 1.170.3) 1.71(0.50) | 1.33(0.52) | 0.95(0.54) | 1.25(0.65) | 1.39(0.48) | 1.31(0.57) | 1.27(0.56)
CC 0.750.11) | 0.08(0.11) | 0.60(0.12) | 0.510.10 | 0.69(0.12) | 0.56(0.16) | 0.40(0.20) | 0.52(0.21) | 0.56(0.13) | 0.46(0.22) | 0.41(0.21)

AUC 0.840.09 | 0.73(0.06) | 0.82(0.06) | 0.80(0.06) | 0.830.05 | 0.80(0.07) | 0.76(0.09) | 0.81(0.06) | 0.82(0.06) [ 0.79(0.07) [ 0.79(0.08)

Average NSS | 2.140.68) | 0.29(0.48) | 1.49(0.45) | 1.180.32 | 1.93(0.65) | 1.35(0.54) | 0.97(0.59) | 1.31(0.69) | 1.46(0.54) | 1.26(0.53) | 1.27(0.58)
CC 0.740.17) | 0.10(0.13) | 0.58(0.13) | 0.480.17) | 0.69(0.12) | 0.53(0.17) | 0.38(0.20) | 0.50(0.21) | 0.55(0.14) | 0.45(0.22) | 0.42(0.21)




TABLE IV
THE MEAN VALUES (STANDARD DEVIATION) COMPARISON OF OUR AND OTHER METHODS WITHOUT B MODELING, OVER MIT AND NUSEF
DATABASES
Database| Metric Our 1tt[8] Cerfl32] Judd[38] Zhao[40] Duan[14] Hou[18] Erdem[22] | Zhang[28] | Jiangl4l] | OBDL25]
AUC 0.850.06) | 0.64(0.09) | 0.82(0.07) | 0.76(0.09) | 0.840.05 | 0.81(0.06) | 0.50(0.21) | 0.79(0.08) | 0.81(0.07) | 0.76(0.09) | 0.74(0.13)
MIT NSS 2.570.70) | 0.56(0.73) | 1.58(0.50) | 0.990.44 | 2.39(0.69) | 1.36(0.49) | 0.74(0.78) | 0.92(0.59) | 1.35(0.61) | 1.02(0.50) | 1.00(0.71)

CC | 0.740.12 | 0.13(0.17) | 0.50(0.13) | 0.32(0.14) | 0.68(0.13) | 0.44(0.13) | 0.24(0.23) | 0.30(0.18) | 0.42(0.17) | 0.33(0.22) | 0.27(0.23)
AUC | 0.820.05 | 0.64(0.10) | 0.800.05 | 0.73(0.08) | 0.810.05 | 0.8(0.06) | 0.44(0.21)| 0.78(0.07) | 0.77(0.09) | 0.76(0.08) | 0.75(0.10)
NUSEF NSS | 1.910.56) | 0.28(0.43) | 1.330.35 | 0.92(0.39) | 1.67(0.52) | 1.30(0.41) | 0.65(0.54) | 0.85(0.48) | 1.15(0.52) | 1.17(0.56)| 1.01(0.63)
CC [ 0.730.12 | 0.07(0.10) | 0.56(0.13) | 0.38(0.15) | 0.66(0.13) | 0.55(0.13) | 0.27(0.22) | 0.35(0.19) | 0.46(0.18) | 0.35(0.22) | 0.28(0.22)
AUC | 0.830.09 | 0.64(0.10) | 0.810.09 | 0.74(0.09) | 0.820.06 | 0.800.06 | 0.46(0.21)| 0.78(0.07) | 0.78(0.09) | 0.76(0.09) | 0.74(0.11)
Average | NSS | 2.170.68) | 0.37(0.53) | 1.41(0.42) | 0.940.47) | 1.90(0.67) | 1.32(0.43) | 0.68(0.63) | 0.87(0.52) | 1.21(0.56) | 1.12(0.54)| 1.00(0.65)
CC | 0.740.12 | 0.09(0.13) | 0.54(0.13) | 0.36(0.15) | 0.67(0.13) | 0.52(0.14) | 0.26(0.22) | 0.34(0.19) | 0.45(0.17) | 0.34(0.22) | 0.28(0.23)
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Fig. 9. Saliency maps of our method and other state-of-theaathods without any CB.

D. Improvement analysis of our method provement can be achieved in our method, when the face

. ) . o . size is large (generally over 0.044) in the image. This is®li
In this subsection, we focus on investigating the saliengyat oyr method performs better when images are with large-

detection improvement of our method at different face size§, o faces. Such better performance is probably due to the
Since Section IV-B has shown that Zhebal. [40] performs oo ctiveness of GMM modeling on facial feature channel,
the best except our method, we use [40] as an anchor [ g e 8 shows that the weight of facial feature channel

the improvement analysis of our method. Here, all 150 &8} ,4hly arrives at maximal value once the face size is larger
images of Section IV-B were used for our analysis. These 130 0.05.

images were first sorted by increased face sizes, and thgn the
were averagely divided into 10 groups according to the sizes
of their corresponding faces. As a result, each group cositai
15 images with similar-sized faces. Finally, the average@f |n fact, saliency detection has potential to be applied nmeo
sizes and improvement of each group (in terms of AUC, NSgemputer vision and image processing tasks, such as image
and CC) were calculated for the analysis. compression, image retargeting and visual quality assarssm
Figure 10 shows the averaged improvement of salienty this section, we presented a simple application of our
detection accuracy over Zhaa al. [40] for the 10 groups saliency detection method to face image compression. Some
of images, the averaged face sizes of which monotonicaigvanced approaches may be also developed on the basis of
increase. From this figure, we can see that the greater iow saliency detection method, for the further improvement

V. IMAGE COMPRESSION APPLICATION
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the detailed texture is removed in these regions. Findily, t
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preprocessed image is compressed by the JPEG encoder. As
a result, the texture details are reduced in non-salieribmsg
with little overall quality degradation, as these regiors c
hardly attract attention. In return, the bit-rates of coagsed

| | I ‘ images can be saved or the quality of salient blocks (e.g.,
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Averaged Face Size

face and facial features) can be enhanced using saved bit-
rates. Since the preprocess of our approach is indepentlent o
the encoder, it can be easily transplanted into other state-
the-art encodér

The same as JPEG, the input image (denotedPdyis
divided into N non-overlapping blocks witl8 x 8 pixels,
i.e., P = {p,})_,. Mathematically, each block, can be

(b) NSS Improvement
B With CB m Without CB

030 processed to be;, by
£'" B p,, = IDCT(LPR(DCT (pn))), ()
E o, B w = .
3 Ziz N NN where DCT and IDCT denote the DCT and inverse DCT,
£ O.w [ I ‘ I | I | I \ respectively. In (7), LPF) is an LPF as follows,
% 005 oo dn(i,j) i+j<T, L.
. = N | | | dn(i,7) = { 0 itj>m, St 1s6i<l6
<°(>’ -0.05 0.017 0.028 0.044 0.055 0.070 0.090 0.107 0.125 0.149 0.199 - (8)
o0 In (8), d,.(i,7) anddZ (i, j) are the(i, j)-th DCT coefficients
Averaged Face Size of the n-th block before and after the LPE, is the cutoff
(c) CC Improvement frequency of the LBF for the-th block, which is proportional

to its averaged saliencys,. For more details about the
Fig. 10. AUC, NSS, and CC improvement of our method over Ztao calculation of7;,, see Appendix A. Finally, the preprocessed
al. [40], along with increased face sizes. Note that the averagsults are jmggeP* = *1N  can be obtained with (7) and (8). and
reported here for 10 groups of images, each of which confares at similar h 9 {p”ii”gl h . | ( ) d ( )’
sizes. Specifically, the horizontal axes stand for the fareaveraged in each th€n compressed by the conventional JPEG encoder.

group. The vertical axes mean the averaged accuracy impeveof our
method over [40], in (a) AUC, (b) NSS, and (c) CC. Note that rtbsults of ; R
saliency detection with CB and without CB are both shown is flyure. B. Results of face IMage compresson
Since our approach simply adds a preprocess step before

the JPEG encoder, we compare the results of our and con-

However, it is out of the scope of this paper, as we onlentional JPEG approaches on compressing ten face images.

focus on the potential of our saliency detection method iFhese ten images include all color face images from [49]

the application of face image compression. (i.e., Lena, Tiffny, Girl01, Girl02 and Girl03), and five fac
images randomly selected from our test set of Section IV (as
A. Approach for face image compression shown in Figure 12). Here, DMOS is used as the metric for

evaluating the subjective visual quality of compressedjiesa

F|g_ure 1 summarizes the framework of our ame"?‘Ch f%ree Appendix B for our subjective experiment on obtaining
face image compression. As can be seen from this figurey & H\15s value of each compressed image

preprocess step is integrated into the conventional Jdint P First, we report in Table V the visual quality improvement

tographic Experts Group (JPEG) approach. In the preprocggs, - annroach, in terms of the DMOS difference. In general,
step, our saliency detection method is applied to genehate t
saliency map of the input face image. Then, the input image'Here, the JPEG encoder is used in our application, due toitersely
is preprocessed by an LPF, the cutoff frequency of which fgh popu_larlty. In_fact, most of other state-of-the-artage encoders, sqch
det ined by the saliency map. That is the non-salient i as I_-|.26$ intra coding, are also bIocI_<-based approaches,TH_lmy can be in

etermined by y p. " nsg conjunction with our saliency detection method for the Hartimprovement
correspond to low cutoff frequency in the LPF, such that coding efficiency.
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TABLE V . .. .
DMOS COMPARISON OF OUR AND CONVENTIONALJPEGAPPROACHEs  tracking data of the training set. In our method, the sajienc

FOR COMPRESSING IMAGES AT SAME LOW BIFRATES map was computed by the linear combination of GMM-based
: : features (face and facial feature) and the traditional low-
Image Resolution Bit-rate (bpp) DMOS . . . . .
(pixel) JPEG T Our 1 JPEG T Our | OIF level features (color, intensity, and orientation). Besidwe
Lena S12x512 | 037 | 037 | 720 | 581 | —13.9 validated that there is a kind of relevance between the vi®igh
Tifffny 512x512 0.27 0.27 62.9 57.0 —5.9 f the li bi . f h ch | df . .
G0l ~5ex756 037 1 037 606 538 —6s o t. e linear com ination for each channel an ace size in
Girlo2 256x256 | 0.29 | 0.29 | 73.6 | 66.7 | —6.9 an image, which can also been learnt from the training set.
Girl03 256x 256 0.45 0.45 61.1 56.7 —4.4 :
Fio12(a) | 19201080 | 020 [ 020 599 [ 5241 75 The evaluation results of AUC, CC, and NSS showed that,
Fig.12(b) | 1920<1080 | 0.27 | 0.27 | 77.7 | 58.9 | —18.8 compared to other 10 state-of-the-art methods, our method
Fig12(b) | 1920x1080 | 0.19 | 0.19 | 565 | 502 | ~6.3 predicted saliency with much higher accuracy. Finally, we
Fig.12(d) | 1920x 1080 0.29 0.29 73.3 54.9 —18.4 ; . . . .
Fig.12(e) | 1920x1080 | 0.24 | 023 | 73.8 | 663 | —8.5 demonstrated a simple yet effective application of oulesaly
[ Average | - [ - [ -1 - [ -1 97 ] detection method on face image compression.
There may exist two research directions for the future work.
TABLE VI (1) Our work in this paper only considers the frontal faces. |

BIT-RATE COMPARISON OF OUR AND CONVENTIONALJPEGAPPROACHES . L . .
FOR COMPRESSING IMAGES AT THE SIMILADMOS fact, the head pose may also influence the distribution ofatis
attention on face. Thus, the saliency detection work rdlate

Image R?;&Ef)ion JPEGBit-rgtlejzr(bpps)aving n— Dg'gs - head pose remains to be done, for images with non-frontal
Lena 512x512 701l | 532 | 24.1% 3390 | 38.2 +4‘.3 faces. (2) Our work in the current form only deals with still

Tifffny 512x512 | 6.96 | 6.09 | 1256 | 407 | 359 | —48 | fgace images. In practice, faces are more likely to appear in
Girlo1 256x 256 6.98 6.05 | 13.3% 34.7 356 | 4+0.9 id h id £ . . Th .
Giloz | _256x256 | 520 | 413 | 20.0% | 39.7 | 386 | —1.1| VId€os, such as video conferencing scenarios. Thus, eatens
Girlo3 256x256 | 6.56 | 581 | 11.4% | 353 | 40.0 | +4.7 of our method to conversational videos, incorporating proti
Fig.12(a) | 1920x 1080 4.94 3.67 | 25.™% 33.3 334 | +40.1 : . : ]
Fio.-12() | 19201080 | 503 [ 309 | 3867 | 377 | 4L7 T 140 mform_at|on of facial features, shows a promising research
Fig.12(c) | 1920x1080 | 3.88 | 3.41 | 12.1% | 36.0 | 33.4 | —2.6 trend in future.
Fig.12(d) | 1920x1080 4.91 4.12 16.1% 41.8 39.8 —2.0
Fig.12(e) | 1920x1080 | 4.43 | 3.74 | 15.6%, | 39.5 | 395 | +0.0
. 006 [ - [ - [ t04 ] APPENDIX

A. Calculation of cutoff frequency T,

As aforementioned, the cutoff frequen@y, of the n-th
ock should be proportional to its averaged saliesgy So,
a‘lﬁm,f':'may be defined by

Average | - [ - ]

the smaller DMOS means better subjective quality of tqﬁ
compressed image. Thus, Table V shows that at the s
(low) bit-rate, the subjective quality of images comprelsisg

our approach is much superior to those compressed by JPEG. T, =8-e*5n, (9)

Next, Table VI tabulates the bit-rate saving of our approach

with JPEG as an anchor. We can see from this table that (M?e]rcfefa > 0andj > 0 are wo dparzla_meters t?] controlbthe
approach hag9% bit-rate saving in average, with roughlycUtoff frequencyZ;, upon averaged saliency,. They can be
similar subjective visual quality. estimated with the following assumption. For the non-gulie

Figure 13 further visualizes two selected images compdas@o.‘:kS with 5, = 0.001, we assume thal;, = 1. For the
by our and the conventional JPEG approaches, respectivé@.'ent blocks W'thg’f - 0'1’. we assume tha, - 15. Ther_1,
From these pictures, one may observe that there exist etvid%rf’mdﬁ can be achieved via solving the following equations:
block effects and severe visual distortion in face for thages Bel- 00t — |
compressed by JPEG. By contrast, our approach has better { Bedle — 15
visual quality in face regions at the expense of quality degr '
dation in other non-salient regions, thus favoring the acifije ~ After solving the above equations, we have= 27.354 and
feeling on compressed images. In summary, our approachdis= 0.973. Finally, the cutoff frequency i&,, = 0.973 -
able to improve the performance of the widely used JPE&7-3%4 for our image compression approach.
encoder, which demonstrates an effective application of ou
saliency detection method.

(10)

B. Subjective assessment for DMOS

DMOS measures subjective quality difference between com-
pressed and uncompressed images. In this paper, it was ob-
In this paper, we have proposed a learning-based methadhed in the IVQUEST software, by designing the following

for detecting saliency on face images, which utilizes facg asubjective assessment.

facial features as two top-down feature channels to predictin our subjective assessment, we utilized a single stimulus
saliency. To analyze fixation distribution on face regions, continuous quality scale (SSCQS) procedure to rate the sub-
conducted an experiment to obtain an eye-tracking databgsetive quality, which is proposed in Rec. ITU-R BT.500 [50]
composed of 510 face images. Based on the statistical amalyihe scales available for the quality rate are: excellen0{10
over our database, we proposed to learn GMMs, which &&), good (80-61), fair (60-41), poor (40-21), and bad (20-1
modeled to compute saliency for both face and facial featurén our assessment, 10 observers, aging from 19 to 34, were
Note that the parameters of GMMs were learnt from the eyevolved to rate the subjective quality of all uncompressed

VI. CONCLUSIONS
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(d)

Fig. 12. Original images used for image compression

(c) JPEG (d) Our approach

Fig. 13. Visual quality comparison of two compressed imagesand (b) show the image of Figure 12(b) compressed by dheeational JPEG approach
and our approach at 0.27 bpp. (c) and (d) show the image of tempressed by the conventional JPEG approach and our abpadd®.37 bpp.

and compressed images. For the subjective assessment, a Z#"™. Xu, X. Deng, S. Li, and Z. Wang, “Region-of-interest deal
SAMSUNG S24B370 LCD monitor was used to randomly conversational hevc coding with hierarchical perceptiardet of face,”

. . . e . IEEE Journal of Selected Topics on Signal Processing, vol. 8(3), 2014.
display images at their original resolutions. As such, th?s] L. Itti, C. Koch, and E. Niebur, “A model of saliency-babeisual at-

distortion of scaling operations can be avoided. tention for rapid scene analysisEEE Transactions on pattern analysis
Besides, for rational evaluation, the viewing distance for and machine intelligence, vol. 20, no. 11, pp. 1254-1259, 1998.

; ; ; ] H. Kim and S. Lee, “Transition of visual attention assesst in
observers was set to be approximately three times of theemag) stereoscopic images with evaluation of subjective visuzlity and

height. discomfort,” Multimedia, |EEE Transactions on, vol. 17, no. 12, pp.
After the subjective assessment of all observers, we addain ~ 2198-2209, 2015.

raw iectivi r f him _Finallv. DM for ] N. Bruce and J. Tsotsos, “Saliency based on informati@ximization,”
aw subjective scores of eac age ally, OS for eat¥ in NIPS, 2005, pp. 155162,

compressed |_mage 1S Obtam_ed upon those raw SCOI’GSI Wﬁﬁ% D. Walther and C. Koch, “Modeling attention to saliembfw-objects,”
converted, using the method in [51]. The DMOS values indi- = Neural networks, vol. 19, no. 9, pp. 1395-1407, 2006.
cate the subjective visual difference between the uncossprke [12] J. Harel, C. Koch, and P. Perona, “Graph-based visuigingg,” in NIPS,

: 2006, pp. 545-552.
reference and compressed test images. [13] N. Imamoglu, W. Lin, and Y. Fang, “A saliency detection model

using low-level features based on wavelet transfoviitimedia, |[EEE
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